首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At sites of blood vessel injury, platelets release numerous substances that may have biological activities influencing cellular responses. In this study we examined separately the chemotactic activity for fibroblasts of three highly purified proteins obtained from platelet alpha granules: platelet factor 4 (PF4), platelet-derived growth factor (PDGF), and beta-thromboglobulin (BTG). We observed that each of these proteins was strongly chemotactic for fibroblasts, with maximum chemotactic activity in each instance comparable to that observed with an optimal concentration of the control chemotactic protein, plasma fibronectin. Each protein was active at very low concentrations. The peak chemotactic activities of PF4, PDGF, and BTG occurred at 200 mg/ml, 30 ng/ml, and 6 ng/ml, respectively. Specificity of fibroblast chemotaxis to individual platelet proteins was provided by finding that anti-PF4 immunoglobulin blocked the chemotactic activity of PF4 without affecting the chemotactic activity of PDGF, while anti-PDGF immunoglobulin blocked the activity of PDGF but did not alter the capacity of PF4 to promote fibroblast chemotaxis. These results suggest that in vivo several alpha granule proteins released from platelets may affect wound healing by causing directed fibroblast migration.  相似文献   

2.
Basic fibroblast growth factor (bFGF) has been shown to play an instrumental role in the cascade of events leading to restenosis; however, the mechanisms of bFGF activation following vascular injury have remained elusive. We have demonstrated that heparanase and platelet factor-4 (PF4), released from activated platelets at the site of injury, liberate bFGF from the extracellular matrix (ECM) of vascular smooth muscle cells (SMC), resulting in the induction of SMC proliferation and migration. Increases in proliferation and migration were inhibited by treatment with a bFGF-neutralizing antibody, suggesting that proliferation and migration in response to heparanase or PF4 are mediated by bFGF activation. When platelets were seeded on top of SMCs, degranulation products were found to release bFGF from the ECM, increasing cell proliferation and cell migration. Again, these increases in SMC proliferation and migration were inhibited by treatment with an anti-bFGF antibody. Furthermore, these increases in proliferation were completely inhibited by treatment with an anti-heparanase antibody. Platelet degranulation products, such as heparanase and PF4, may liberate bFGF from extracellular sequestration, activating the growth factor and inducing the SMC proliferation and migration that contribute to the wound healing response following vascular injury.  相似文献   

3.
To determine the storage site of platelet fibrinogen and of platelet factor 4 (PF4) in human platelets by immunoelectron microscopic techniques, washed human platelets were briefly exposed to Karnovsky's fixative and embedded in water-soluble Durcupan. Thin sections of platelets were exposed to Fab fragments of rabbit anti-human fibrinogen or of goat anti-human PF4, followed by a peroxidase conjugate of Fab fragments of antibodies to rabbit immunoglobulin (Ig) G or to goat IgG. The technique enabled preservation of the antigenic determinants of the platelet proteins, accessibility of Fab fragments to the platelet proteins, and maintenance of the ultrastructural integrity of the platelets. Using this approach, it was directly demonstrated that platelet fibrinogen and PF4 are stored in the alpha-granules of human platelets.  相似文献   

4.
Active suppression mediated by CD4(+)CD25(+) T regulatory (Tr) cells plays an important role in the down-regulation of T cell responses to both foreign and self-Ags. Platelet factor 4 (PF4), a platelet-derived CXC chemokine, has been shown to strongly inhibit T cell proliferation as well as IFN-gamma and IL-2 release by isolated T cells. In this report we show that human PF4 stimulates proliferation of the naturally anergic human CD4(+)CD25(+) Tr cells while inhibiting proliferation of CD4(+)CD25(-) T cells. In coculture experiments we found that CD4(+)CD25(+) Tr cells exposed to PF4 lose the ability to inhibit the proliferative response of CD4(+)CD25(-) T cells. Our findings suggest that human PF4, by inducing Tr cell proliferation while impairing Tr cell function, may play a previously unrecognized role in the regulation of human immune responses. Because platelets are the sole source of PF4 in the circulation, these findings may be relevant to the pathogenesis of certain immune-mediated disorders associated with platelet activation, such as heparin-induced thrombocytopenia and autoimmune thrombocytopenic purpura.  相似文献   

5.
Platelets are central to both normal hemostasis and abnormal thrombotic states along with the vessel wall, coagulation elements, and blood flow. The platelets play a pivotal role in the reaction that occurs after vessel injury, during which platelets first adhere to the vessel wall, undergo a release reaction and then aggregate, probably as a result of the materials released from platelets. These processes can be studied by a series of in vitro tests which form the basis of our knowledge of platelets in hemostasis. While the hemostatic plug is usually microscopic in size, this same plug (platelet thrombus) may contribute to the pathogenesis of several arterial diseases such as transient ischemic attacks, sudden blindness, sudden cardiac death and acute respiratory death syndrome. Careful microscopic examinations have shown that platelet aggregates may be found in the microcirculation which could affect vital structures such as the conduction system of the heart. Both anatomic and therapeutic evidence evidence suggests that platelets play a role in venous thrombosis. Recent evidence suggests increased levels of materials known to be released from platelets in patients with both arterial and venous thrombi along with increased platelet coagulant activities in patients with venous thrombosis.  相似文献   

6.
During vascular injury, platelets adhere to exposed subendothelial proteins, such as collagen, on the blood vessel walls to trigger clot formation. Although the biochemical signalings of platelet-collagen interactions have been well characterized, little is known about the role microenvironmental biomechanical properties, such as vascular wall stiffness, may have on clot formation. To that end, we investigated how substrates of varying stiffness conjugated with the same concentration of Type I collagen affect platelet adhesion, spreading, and activation. Using collagen-conjugated polyacrylamide (PA) gels of different stiffnesses, we observed that platelets do in fact mechanotransduce the stiffness cues of collagen substrates, manifesting in increased platelet spreading on stiffer substrates. In addition, increasing substrate stiffness also increases phosphatidylserine exposure, a key aspect of platelet activation that initiates coagulation on the platelet surface. Mechanistically, these collagen substrate stiffness effects are mediated by extracellular calcium levels and actomyosin pathways driven by myosin light chain kinase but not Rho-associated protein kinase. Overall, our results improve our understanding of how the mechanics of different tissues and stroma affect clot formation, what role the increased vessel wall stiffness in atherosclerosis may directly have on thrombosis leading to heart attacks and strokes, and how age-related increased vessel wall stiffness affects hemostasis and thrombosis.  相似文献   

7.
Blood platelets are involved in Plasmodium falciparum malaria pathology as shown by thrombocytopenia and increased plasma level of two alpha granule proteins: beta thromboglobulin (beta TG) and platelet factor 4 (PF4). In this study we demonstrate that Plasmodium falciparum parasitized erythrocytes activate directly the secretion of beta TG and PF4 by human platelets. This secretion is related to parasitemia and occurs immediately after contact. Treatment of parasited erythrocytes by trypsin and diffusion chamber experiments suggest that platelet activation is triggered by parasitic substances shed on erythrocyte membrane and released in the culture medium.  相似文献   

8.
Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.  相似文献   

9.
Platelets play a critical role in the pathophysiology of peripheral arterial disease (PAD). The mechanisms by which muscle ischemia regulates aggregation of platelets are poorly understood. We have recently identified the Nod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) expressed by platelets as a critical regulator of platelet activation and aggregation, which may be triggered by activation of toll-like receptor 4 (TLR4). In this study, we performed femoral artery ligation (FAL) in transgenic mice with platelet-specific ablation of TLR4 (TLR4 PF4) and in NLRP3 knockout (NLRP3?/?) mice. NLRP3 inflammasome activity of circulating platelets, as monitored by activation of caspase-1 and cleavage of interleukin-1β (IL-1β), was upregulated in mice subjected to FAL. Genetic ablation of TLR4 in platelets led to decreased platelet caspase 1 activation and platelet aggregation, which was reversed by the NLRP3 activator Nigericin. Two weeks after the induction of FAL, ischemic limb perfusion was increased in TLR4 PF4 and NLRP3?/? mice as compared to control mice. Hence, activation of platelet TLR4/NLRP3 signaling plays a critical role in upregulating platelet aggregation and interfering with perfusion recovery in muscle ischemia and may represent a therapeutic target to improve limb salvage.  相似文献   

10.
Summary This article summarizes recent ultrastructure findings from our laboratory and documents some of the information accumulated primarily since 1975 from many laboratories. Special attention is given to documentation by scanning electron microscopy which affords insight into platelet activation (adhesion, aggregation, release/secretion) and especially platelet-vessel wall interactions. Structural physiology of platelets is considered in some detail as a basis for understanding platelet disorders contributing to clinical problems of thrombosis and hemorrhage. The impaired ability of vonWillebrand platelets to adhere to injured vessel wall is reported using the human umbilical vein perfusion model. Relationships between platelets and blood coagulation factors focus on the exquisite sensitivity of platelets to minute amounts of thrombin. Unmasking of platelet factor 3 sites is identified on activated platelets, after glutaraldehyde fixation, by their reaction to latex bearing anti-platelet factor 3 markers. The basis for platelet-collagen interactions is reviewed. Conditions for and possible mechanisms behind platelet interaction with vessel wall are discussed. Ex vivo flowing blood-vessel wall models offer opportunities for improved understanding of the platelets role(s) in vascular diseases.  相似文献   

11.
The platelet activation receptor CLEC-2 plays crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis, although its role in thrombosis/hemostasis remains controversial. An endogenous ligand for CLEC-2, podoplanin, is expressed in lymphatic endothelial cells (LECs). We and others have reported that CLEC-2-deficiency is lethal at mouse embryonic/neonatal stages associated with blood-filled lymphatics, indicating that CLEC-2 is essential for blood/lymphatic vessel separation. However, its mechanism, and whether CLEC-2 in platelets is necessary for this separation, remains unknown. We found that specific deletion of CLEC-2 from platelets leads to the misconnection of blood/lymphatic vessels. CLEC-2(+/+) platelets, but not by CLEC-2(-/-) platelets, inhibited LEC migration, proliferation, and tube formation but had no effect on human umbilical vein endothelial cells. Additionally, supernatants from activated platelets significantly inhibited these three functions in LECs, suggesting that released granule contents regulate blood/lymphatic vessel separation. Bone morphologic protein-9 (BMP-9), which we found to be present in platelets and released upon activation, appears to play a key role in regulating LEC functions. Only BMP-9 inhibited tube formation, although other releasates including transforming growth factor-β and platelet factor 4 inhibited proliferation and/or migration. We propose that platelets regulate blood/lymphatic vessel separation by inhibiting the proliferation, migration, and tube formation of LECs, mainly because of the release of BMP-9 upon activation by CLEC-2/podoplanin interaction.  相似文献   

12.
Rheological aspects of platelet-vessel wall interactions involve cell-cell encounters, platelet - vessel wall encounters and platelet-thrombus interactions. The cell-cell encounters are usually caused by convection of cells in shear flows rather than by Brownian motion; this is important in aggregation and in the enhancement of the diffusion of platelets by red cell motion. Platelet - vessel wall interactions can involve transient adhesion (lasting from a fraction of a second to a few minutes) as well as more permanent adhesion. Reaction rates between platelets and walls are generally very small except on damaged vessels and some artificial surfaces. Ultra-filtration through the vessel wall affects cell-wall interactions. Rheological analyses of thrombus formation have been made and shown interesting relations to experimental observations. Some experimental results have indicated that platelets are capable of reacting within a small fraction of a second. Red cells may act as mechanoreceptors for increases in shear rate and facilitate the speed of response of platelets. Surface geometrical forms such as bumps and cavities tend to prolong residence times and facilitate thrombus formation.  相似文献   

13.
A reduced zinc intake is associated with numerous abnormalities and, in particular, with hemostasis dysfunction. In this report, we studied the effects of a long-term dietary zinc restriction on platelet function. Three groups of rats were analyzed: a zinc-deficient group (ZD) and two zinc-adequate fed groups, one pair-fed (PF) and one ad libitum fed (AL). We found that ZD diet (0.2 p.p.m.) impaired ADP-induced aggregation of washed platelet after 4 and 8 weeks of diet. Thrombin-induced aggregation was impaired in ZD rats and PF rats after 8 weeks. The thrombin-induced mobilization of radiolabeled arachidonate preincorporated into platelet phospholipids was followed as well as the subsequent formation of labeled cyclooxygenase and lipoxygenase products. Stimulated platelets of ZD rats exhibited a decreased production of cyclooxygenase and lipoxygenase products, particularly after 8 weeks of diet. Moreover, platelet thromboxane generation was decreased in the ZD group as studied using a radioimmunoassay after thrombin stimulation. In addition, we measured the total fatty acid compositions of platelet and plasma. As a whole, 20:5 (n – 3) and 22:5 (n – 3) fatty acids content were significantly increased in platelet lipids after 8 weeks. On the other hand, it is known that enrichment of these fatty acids through dietary studies, both in animal and human as well as in vitro incorporation in platelets, resulted in an inhibition of platelet function. Consequently, these changes in platelet membrane fatty acid composition may contribute to the impaired platelet aggregation observed in ZD rats.  相似文献   

14.
To investigate whether serum biomarkers can be used to indicate the responsiveness of acute myeloid leukemia to remission induction chemotherapy, we performed MALDI-TOF protein profile analysis of patient sera. The resulting spectra revealed a protein (or peptide) peak at m/z 7764 that varied in intensity; its intensity was much higher in samples from patients in complete remission than in those from patients with resistant disease or in samples taken prior to treatment (at the time of diagnosis). Using fractionation, trypsin digestion, MS/MS, and protein molecular weight analyses, we identified the m/z 7764 protein as platelet factor-4 (PF4). This identification was confirmed by a magnetic bead-based MALDI immunoassay. Statistical comparison of PF4 levels and platelet counts in patient sera revealed a significant positive correlation between the two variables. This study demonstrates that PF4 protein levels are a good indicator for the recovery of blood count in the complete remission of acute myeloid leukemia. The linear positive correlation curve indicates that blood count recovery of platelets to >100,000/mm(3) is equivalent to a serum PF4 recovery level of >2.492 microg/ml.  相似文献   

15.
The robust inflammatory response that occurs during ischemia reperfusion (IR) injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4), during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.  相似文献   

16.
Initial immunohistochemical localization of human platelet factor 4 (PF4) in tissue mast cells suggested that the protein was present in the mast cell granule. It was proposed that this could reflect binding of PF4 to heparin or heparan sulphate, known granule constituents. We report here the confirmation of granule localization by an immunoelectron microscopical method. The possible role of such binding is unknown, but the potential for cationic proteins of platelet origin interacting with vessel wall constituents is discussed.  相似文献   

17.
The inflammatory response involves the recruitment and activation of various types of cells from the systemic circulation and from local tissues. One important component of the inflammatory response is the activation of platelets at sites of tissue injury and inflammation. In particular, activated platelets release large amounts of two proteins, platelet factor 4 (PF4) and beta-thromboglobulin (beta TG), which mediate several inflammatory processes. Recently, many novel proteins that are structurally related to PF4 and beta TG have been identified. The PF4-related proteins are secreted by white blood cells, endothelial cells, and fibroblasts in response to various inflammatory and mitogenic stimuli. Like PF4, these proteins appear to be inflammatory response mediators; several of them are potent chemoattractants, activating agents, or mitogens for specific cell types that are involved in the inflammatory response. The study of PF4-related proteins provides new insight into the mechanisms of the immune response, and may result in the development of new therapeutic agents.  相似文献   

18.
The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation.  相似文献   

19.
Cerebral malaria (CM) is a major complication of Plasmodium falciparum infection in children. The pathogenesis of CM involves vascular inflammation, immune stimulation, and obstruction of cerebral capillaries. Platelets have a prominent role in both immune responses and vascular obstruction. We now demonstrate that the platelet-derived chemokine, platelet factor 4 (PF4)/CXCL4, promotes the development of experimental cerebral malaria (ECM). Plasmodium-infected red blood cells (RBCs) activated platelets independently of vascular effects, resulting in increased plasma PF4. PF4 or chemokine receptor CXCR3 null mice had less severe ECM, including decreased T cell recruitment to the brain, and platelet depletion or aspirin treatment reduced the development of ECM. We conclude that Plasmodium-infected RBCs can directly activate platelets, and platelet-derived PF4 then contributes to immune activation and T cell trafficking as part of the pathogenesis of ECM.  相似文献   

20.
We have generated mouse transgenic lineages for C3G (tgC3G) and C3GΔCat (tgC3GΔCat, C3G mutant lacking the GEF domain), where the transgenes are expressed under the control of the megakaryocyte and platelet specific PF4 (platelet factor 4) gene promoter. Transgenic platelet activity has been analyzed through in vivo and in vitro approaches, including bleeding time, aggregation assays and flow cytometry. Both transgenes are expressed (RNA and protein) in purified platelets and megakaryocytes and do not modify the number of platelets in peripheral blood. Transgenic C3G animals showed bleeding times significantly shorter than control animals, while tgC3GΔCat mice presented a remarkable bleeding diathesis as compared to their control siblings. Accordingly, platelets from tgC3G mice showed stronger activation in response to platelet agonists such as thrombin, PMA, ADP or collagen than control platelets, while those from tgC3GΔCat animals had a lower response. In addition, we present data indicating that C3G is a mediator in the PKC pathway leading to Rap1 activation. Remarkably, a significant percentage of tgC3G mice presented a higher level of neutrophils than their control siblings. These results indicate that C3G plays an important role in platelet clotting through a mechanism involving its GEF activity and suggest that it might be also involved in neutrophil development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号