首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intra‐cohort cannibalism is an example of a size‐mediated priority effect. If early life stages cannibalize slightly smaller individuals, then parents face a trade‐off between breeding at the best time for larval growth or development and predation risk from offspring born earlier. This game‐theoretic situation among parents may drive adaptive reproductive phenology toward earlier breeding. However, it is not straightforward to quantify how cannibalism affects seasonal egg fitness or to distinguish emergent breeding phenology from alternative adaptive drivers. Here, we devise an age‐structured game‐theoretic mathematical model to find evolutionary stable breeding phenologies. We predict how size‐dependent cannibalism acting on eggs, larvae, or both changes emergent breeding phenology and find that breeding under inter‐cohort cannibalism occurs earlier than the optimal match to environmental conditions. We show that emergent breeding phenology patterns at the level of the population are sensitive to the ontogeny of cannibalism, that is, which life stage is subject to cannibalism. This suggests that the nature of cannibalism among early life stages is a potential driver of the diversity of reproductive phenologies seen across taxa and may be a contributing factor in situations where breeding occurs earlier than expected from environmental conditions.  相似文献   

2.
Seeding selected populations with high grazing resistance may foster recovery of plant populations threatened by overgrazing. Resistance to grazing depends on grazing avoidance (escape from grazers) and grazing tolerance (ability to growth after defoliation). Many studies of grazing tolerance defoliate plants at a fixed height instead of removing the same proportion of biomass and therefore confound tolerance with avoidance. For this reason, the information on evolution of tolerance to defoliation at the intraspecific level is remarkably scarce despite the abundance of papers published that evaluate responses to defoliation. The estimation of the cost of tolerance is also troublesome because current methods usually include spurious correlations due to correlation between variables that share common terms. The objectives of this paper were to assess the intraspecific variation in tolerance and in traits associated with avoidance and growth in populations with different sheep grazing histories. We also estimated the percentage of biomass removed when the defoliation treatment was imposed at fixed height in order to separate tolerance and avoidance. Finally, we estimated the cost of tolerance using a new method proposed for spurious correlations. Results of a greenhouse experiment indicated no difference in tolerance among the three compared populations. However, the populations from overgrazed fields had more prostrate growth form, higher specific leaf area, and higher tillering rate (when no defoliated) than populations from exclosures. We confirmed that fixed height defoliation would have removed a higher proportion of shoot biomass from taller than from shorter individual plants, confounding grazing tolerance and avoidance. Regarding the cost of tolerance, we found no differences from a null model of no cost, indicating that the evolution (or future breeding) of more tolerant genotypes would not be constrained by this cost.  相似文献   

3.
植物物候对气候变化的响应   总被引:44,自引:6,他引:44  
陆佩玲  于强  贺庆棠 《生态学报》2006,26(3):929-929
植物物候的变化可以直观地反映某些气候变化,尤其是气候变暖.植物生长节律的变化引起植物与环境关系的改变.生态系统的物质循环(如水和碳的循环)等过程将随物候而改变.不同种类植物物候对气候变化的响应的差异,会使植物间和动植物间的竞争与依赖关系也发生深刻的变化.目前欧洲、美洲、亚洲等许多地区均有关于春季植物物候提前,秋季物候推迟,使植物的生长季延长,从而提示气候变暖的趋势.植物物候的模拟模型构成生态系统生产力模型的重要部分.  相似文献   

4.
Nord EA  Shea K  Lynch JP 《Annals of botany》2011,108(2):391-404

Background and Aims

Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils.

Methods

To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments.

Key Results

The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater.

Conclusions

Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments.  相似文献   

5.
6.
7.
Loreti  Juan  Oesterheld  Martín  Sala  Osvaldo 《Plant Ecology》2001,157(2):197-204
Grass species frequently show marked intraspecific variation inmorphology and tolerance to defoliation. Remarkably, most of this evidencecomesfrom grasslands with long evolutionary history of grazing. Here, we explore theintraspecific variation in grazing tolerance and morphometric traits associatedwith grazing avoidance of Paspalum dilatatum (Poir.), agrass from the Flooding Pampa (Argentina), where grazing is a novel disturbancein evolutionary time. We performed a clipping experiment in a greenhouse withtwo populations from sites with contrasting short term grazing regime:continuous grazing and 20 year-old grazing exclosure. The populations did notdiffer in their tolerance to clipping, and showed minor differences in the wayclipping affected plant height, a trait associated with grazing avoidance. Ourresults indicate that there are exceptions to the generalized findings of highlevels of intraspecific variation in grazing resistance among populations ofgrasses. These exceptions may be associated to evolutionary history of grazing.  相似文献   

8.
气候变暖背景下的植物物候变化广受关注, 然而常用的植物物候变化预测模型未充分考虑植物对环境的适应性, 给预测结果带来了较大的不确定性。该文基于2002-2011年青藏高原10个站点的地面物候观测资料以及年平均气温数据, 对空间换时间模型预测车前(Plantago asiatica)和蒲公英(Taraxacum mongolicum)各主要物候事件(展叶始期、开花始期和黄枯普遍期)变化的可行性及其在升温背景下的变化规律进行了分析。首先利用不同海拔高度的气温和物候事件分别与地理因子(经度、纬度和海拔)建立多元线性回归模型, 然后在此基础上剔除经度和纬度的影响, 单独考察海拔变化所引起的气温与植物物候变化, 最后以海拔高度作为桥梁来考察物候变化与温度变化的关系。结果表明, 采用各站点对应的海拔高度来模拟年平均气温空间差异的R2均大于0.89, 表明海拔梯度可以用来反映时间尺度下的年际温度变化; 车前和蒲公英各物候事件发生日期拟合值均与海拔高度变化关系显著, R2均大于0.70, 表明海拔变化是影响它们各物候事件变化的主要地理因子; 在物候事件发生日期拟合值和年平均气温拟合值的回归方程中, R2均大于0.93, 说明基于不同海拔高度模拟得到的年平均气温变化可以对时间尺度上车前和蒲公英的物候事件变化进行预测。空间换时间预测表明, 温度每升高1 ℃, 车前展叶始期和开花始期分别提前5.1和5.4 d, 而黄枯普遍期推迟4.8 d; 蒲公英展叶始期和开花始期分别提前6.5和7.8 d, 而黄枯普遍期推迟6.7 d。  相似文献   

9.
基于贺兰山地区98棵油松树轮样本的宽度数据、植被归一化指数(NDVI)数据以及土地覆被数据,采用VS-oscilloscope模型模拟的油松径向生长过程,研究植被冠层与树干形成层物候之间的联系.结果表明:林地冠层与油松形成层生长结束期(EOS)显著相关,且高于草地与形成层之间的相关.油松生长开始期(SOS)和EOS分别...  相似文献   

10.
Changes in rainfall regime and grazing pressure affect vegetation composition and diversity with ecological implications for savannahs. The savannah in East Africa has experienced increased livestock grazing and rainfall variability but the impacts associated with those changes on the herbaceous layer have rarely been documented. We investigated the effect of livestock grazing, rainfall manipulation and their interaction on the composition and diversity of the herbaceous community in the savannah for two years in Lambwe, Kenya. Rainfall manipulation plots were set up for vegetation sampling;these plots received either 50% more or 50% less rainfall than control plots. Simpson’s diversity and Bergere Parker indices were used to determine diversity changes and dominance respectively. The frequency of species was used to compute their abundance and their life forms as determined from the literature. Grazing significantly increased species diversity through suppression of dominant species. Rainfall manipulation had no significant impact on plant diversity in fenced plots, but rainfall reduction significantly reduced diversity in grazed plots. In contrast, rainfall manipulation had no impact on dominance in either fenced or grazed plots. The interaction of grazing and rainfall manipulation is complex and will require additional survey campaigns to create a complete picture of the implications for savannah structure and composition.  相似文献   

11.
12.
Water points provide excellent sites for studying overgrazing effects on plant communities in dry areas. Distance from water can be considered like a surrogate of grazing pressure being high near the water and low away from it. The main aim of this study is to investigate overgrazing effects on acceptability of fodder plants along a grazing gradient around three natural watering points. To achieve this goal, we classified spontaneous plants according to their acceptability degree and we followed their cover, richness and density as well as the grazing value along a grazing gradient around these wells, using phyto-ecological studies during the spring 2004 and 2006. Main results show that very palatable plants (mainly constituted by annuals) are more dominant in both the closed and the more disturbed transect areas around wells. The unpalatable plants dominate sites with moderate disturbance around wells. Ligneous palatable species obviously have a lower degree of disturbance. During the studied seasons the grazing gradient around wells 1 and 2, the oldest ones, seemed to exert a feedback upon the grazing intensity.  相似文献   

13.
The American Bison (Bison bison Linnaeus) in the Henry Mountains are one of the last free-roaming, genetically pure herds of bison remaining in North America. Anecdotal evidence indicates that this herd is utilising a cattle winter range during the summer and fall, creating a conflict between the state agency that manages the bison, and the Bureau of Land Management (BLM) and local ranchers. In theory, the addition of bison grazing pressure could reduce forage availability in the short term and lead to undesired changes in the plant community in the long term. Our objective was to determine whether bison have altered the plant species composition of the cattle winter range. We characterised plant species composition, percent cover, and grazing intensity on three adjacent, geomorphologically similar mesas. Grazing regimes were different on the three mesas, one with bison and cattle present, one with cattle only present, and the third with neither cattle nor bison present. Vegetation surveys were accompanied by a 28-year remote sensing time series to test for temporal shifts in an index of primary productivity. We found a higher grazing intensity on two dominant forage species on the bison plus cattle grazed mesa in fall, before the cattle were turned out to winter pasture. Despite this difference in grazing intensity, we found few differences in species composition, percent cover, or NDVI across the three grazing regimes. Our results suggest that high intensity summer bison grazing, while likely creating short-term reductions in forage availability, has not caused differences in plant community composition or productive potential. Shifts in community composition can take years to unfold and just as long to correct; therefore, continued monitoring of the combined effects of cattle and bison is needed.  相似文献   

14.
Studying the phenology, which is an important issue of plants, can be used for determining the best time of all kinds of utilizations, and also conservation and stability of plants’ growth and breeding will result. Therefore, this study was performed in Tezkharab rangelands, where Puccinella distans is an important vegetative element that is consumed by livestock, to determine the suitable grazing time for this plant based on its phenology, for about a 4-year period (2007–2010). For this purpose, plant phenology and changes in its growth characteristics were investigated weekly. Moreover, during this period, all phenological stages were adjusted to the monthly precipitation and temperature. The results indicated that the time of phenological stages had fluctuations which were related to environmental conditions. The best time to start grazing is early May and the best time for collecting the seeds of this species is late July to early August.  相似文献   

15.
该研究利用谱系独立比较法(Phylogenetically Independent Contrasts,PIC)和Wilcoxon秩和检验法,分析中国科学院植物研究所植物园(39°54'N,116°12'E)中的84个物种170株个体的传粉方式和果实类型对木本开花时间和结实时间的影响,其中Wilcoxon秩和检验法检验的结果作为PIC检验结果的参考。结果表明:(1)传粉方式显著影响植物开花和结实时间,风媒花植物比虫媒花植物开花和结实早;(2)果实类型对结实时间的影响在考虑和不考虑物种间系统发育关系时表现不同,当不考虑物种间系统发育关系时,肉质果实植物结实时间比非肉质果实植物早;(3)不同的传粉方式间以及不同的果实类型间植物的花果间隙期无显著差异,但本研究结果显示肉质果实植物结实时间比非肉质果实植物大约早20d。由此推论:(1)植物固有属性,如传粉方式和果实类型,会影响植物繁殖物候,且不同的属性影响强度不同;(2)与某一特定物候期或繁殖器官相关性大的属性对该物候期的影响可能更大,如传粉方式对开花时间的影响可能大于其对结实时间的影响,而果实类型对结实物候期的影响更大。  相似文献   

16.
Species composition and herbage dynamics in relation to rainfall variability and cattle grazing were studied in permanently protected, grazed, and temporarily fenced treatments on three sites in a seasonally dry tropical savanna. Permanently protected sites, established between 1979 and 1984, were 55–79% similar with each other in species composition, and 14–25% similar with grazed sites during the period 1986–1988. Similarity among grazed sites was only 36–43%. Number of species was greater in the grazed treatment than in the permanently protected treatment. The percentages of annual grasses and non-leguminous forbs were greater in grazed savanna than in permanently protected savanna. Species diversity was higher in grazed savanna than in the corresponding permanently protected savanna. Species the two annual cycles studied, peak live shoot biomass was 614 g m-2 in permanently protected savanna, 109 g m-2 in grazed savanna, and 724 g m-2 in temporarily fenced savanna. Live shoot biomass in temporarily fenced savanna was 18 to 44% greater than in permanently protected savanna. Peak canopy biomass ranged from 342 to 700 g m-2 in permanently protected savanna. It was related with total rainy season rainfall, and was particularly sensitive to late rainy season rainfall. On the other hand, peak canopy biomass in grazed savanna ranged from 59 to 169 g m-2 and was related to grazing intensity rather than either total rainy season rainfall or late rainy season rainfall. Coefficient of variation of green biomass in permanently protected savanna was related with rainfall variability indicating it to be a pulsed system which responds quickly to rainfall events. Biomass of woody species ranged from 2466 to 5298 g m-2 in permanently protected savanna and from 744 to 1433 g m–2 in the grazed savanna. Green foliage biomass was 3.7 to 6.4% of the woody biomass in permanently protected and 5.6 to 5.9% in grazed savanna, and supplements substantially the fodder resource during the dry periods of the year.  相似文献   

17.
18.
The conditions leading to gigantism in nine‐spined sticklebacks Pungitius pungitius were analysed by modelling fish growth with the von Bertalanffy model searching for the optimal strategy when the model's growth constant and asymptotic fish size parameters are negatively related to each other. Predator‐related mortality was modelled through the increased risk of death during active foraging. The model was parameterized with empirical growth data of fish from four different populations and analysed for optimal growth strategy at different mortality levels. The growth constant and asymptotic fish size were negatively related in most populations. Optimal fish size, fitness and life span decreased with predator‐induced mortality. At low mortality, the fitness of pond populations was higher than that of sea populations. The differences disappeared at intermediate mortalities, and sea populations had slightly higher fitness at extremely high mortalities. In the scenario where all populations mature at the same age, the pond populations perform better at low mortalities and the sea populations at high mortalities. It is concluded that a trade‐off between growth constant and asymptotic fish size, together with different mortality rates, can explain a significant proportion of body size differentiation between populations. In the present case, it is a sufficient explanation of gigantism in pond P. pungitius.  相似文献   

19.
20.
Phenology models are becoming increasingly important tools to accurately predict how climate change will impact the life histories of organisms. We propose a class of integral projection phenology models derived from stochastic individual‐based models of insect development and demography. Our derivation, which is based on the rate summation concept, produces integral projection models that capture the effect of phenotypic rate variability on insect phenology, but which are typically more computationally frugal than equivalent individual‐based phenology models. We demonstrate our approach using a temperature‐dependent model of the demography of the mountain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine trees. This work illustrates how a wide range of stochastic phenology models can be reformulated as integral projection models. Due to their computational efficiency, these integral projection models are suitable for deployment in large‐scale simulations, such as studies of altered pest distributions under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号