首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently discovered bifunctional antibiotic-resistance enzyme named AAC(3)-Ib/AAC(6')-Ib', from Pseudomonas aeruginosa, catalyzes acetylation of aminoglycoside antibiotics. Since both domains are acetyltransferases, each was cloned and purified for mechanistic studies. The AAC(3)-Ib domain appears to be highly specific to fortimicin A and gentamicin as substrates, while the AAC(6')-Ib' domain exhibits a broad substrate spectrum. Initial velocity patterns indicate that both domains follow a sequential kinetic mechanism. The use of dead-end and product inhibition and solvent-isotope effect reveals that both domains catalyze their reactions by a steady-state ordered Bi-Bi kinetic mechanism, in which acetyl-CoA is the first substrate that binds to the active site, followed by binding of the aminoglycoside antibiotic. Subsequent to the transfer of the acetyl group, acetylated aminoglycoside is released prior to coenzyme A. The merger of two genes to create a bifunctional enzyme with expanded substrate profile would appear to be a recent trend in evolution of resistance to aminoglycoside antibiotics, of which four examples have been documented in the past few years.  相似文献   

2.
Bacterial resistance to the aminoglycoside antibiotics is manifested primarily by enzymic modification of these drugs. One important mechanism of streptomycin modification is through ATP-dependent O-adenylation, catalyzed by streptomycin adenylyltransferase. Initial velocity patterns deduced from steady state kinetics indicate a sequential mechanism. Dead-end inhibition by tobramycin and neomycin is non-competitive versus streptomycin and uncompetitive versus ATP, indicative of ordered substrate binding where ATP binds first and then streptomycin. These results surmise that streptomycin adenylyltransferase follows an ordered, sequential kinetic mechanism in which one substrate (ATP) binds prior to the antibiotic and pyrophosphate is released prior to formation of AMP-streptomycin.  相似文献   

3.
Enzymatic modification of aminoglycoside antibiotics mediated by regioselective aminoglycoside N-acetyltransferases is the predominant cause of bacterial resistance to aminoglycosides. A recently discovered bifunctional aminoglycoside acetyltransferase (AAC(6')-Ib variant, AAC(6')-Ib-cr) has been shown to catalyze the acetylation of fluoroquinolones as well as aminoglycosides. We have expressed and purified AAC(6')-Ib-wt and its bifunctional variant AAC(6')-Ib-cr in Escherichia coli and characterized their kinetic and chemical mechanism. Initial velocity and dead-end inhibition studies support an ordered sequential mechanism for the enzyme(s). The three-dimensional structure of AAC(6')-Ib-wt was determined in various complexes with donor and acceptor ligands to resolutions greater than 2.2 A. Observation of the direct, and optimally positioned, interaction between the 6'-NH 2 and Asp115 suggests that Asp115 acts as a general base to accept a proton in the reaction. The structure of AAC(6')-Ib-wt permits the construction of a molecular model of the interactions of fluoroquinolones with the AAC(6')-Ib-cr variant. The model suggests that a major contribution to the fluoroquinolone acetylation activity comes from the Asp179Tyr mutation, where Tyr179 makes pi-stacking interactions with the quinolone ring facilitating quinolone binding. The model also suggests that fluoroquinolones and aminoglycosides have different binding modes. On the basis of kinetic properties, the pH dependence of the kinetic parameters, and structural information, we propose an acid/base-assisted reaction catalyzed by AAC(6')-Ib-wt and the AAC(6')-Ib-cr variant involving a ternary complex.  相似文献   

4.
The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycoside acetyltransferase domain of the enzyme, AAC(6')-Ie, is the only member of the large AAC(6') subclass known to modify fortimicin A and catalyze O-acetylation. We have demonstrated through solvent isotope, pH, and site-directed mutagenesis effects that Asp-99 is responsible for the distinct abilities of AAC(6')-Ie. Moreover, we have demonstrated that small planar molecules such as 1-(bromomethyl)phenanthrene can inactivate the enzyme through covalent modification of this residue. Thus, Asp-99 acts as an active site base in the molecular mechanism of AAC(6')-Ie. The prominent role of this residue in aminoglycoside modification can be exploited as an anchoring site for the development of compounds capable of reversing antibiotic resistance in vivo.  相似文献   

5.
A class 1 integron was detected in a single multidrug-resistant strain of enterotoxigenice Escherichia coli (ETEC) O159 after examination of 23 clinical E. coli isolates. This isolate was resistant to streptomycin, kanamycin, gentamicin, chloramphenicol and ampicillin. Sequencing of the class 1 integron identified three-gene cassettes. The first is the streptothricin acetyltransferase gene, sat, which confers resistance to streptothricin. The second is an ORF whose product is a putative phosphoserine phosphatase (PSP), and the last is an aminoglycoside adenyltransferase gene, aadA2, which confers resistance to streptomycin and spectinomycin. The putative PSP gene product was found to be 39%, 38%, 28%, and 27% identical to PSP gene products of Vibrio vulnificus CMCP6, V. vulnificus YJ016, Pseudomonas syringae, and P. aeruginosa, respectively. Southern-blot hybridization showed that this integron is located on a 90 kb plasmid. This is the first report identifying a putative PSP gene in an integron.  相似文献   

6.
The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5′ leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches.  相似文献   

7.
The gene cluster for spectinomycin biosynthesis from Streptomyces spectabilis was analyzed completely and registered under the accession number EU255259 at the National Center for Biotechnology Information. Based on sequence analysis, spcM of the S. spectabilis cluster is the only methyltransferase candidate required for methylation in spectinomycin biosynthesis. It has high similarity with the conserved domain of DNA methylase, which contains both N-4 cytosine-specific DNA methylases and N-6 adenine-specific DNA methylases. Nucleotide methylation can provide antibiotic resistance, such as 16S rRNA methyltransferase, to Enterobacteriaceae. We therefore tested a hypothesis that SpcM offers aminoglycoside resistance to bacteria. The heterologous expression of spcM in Escherichia coli and S. lividans enhanced resistance against spectinomycin and its relative aminoglycoside antibiotics. We therefore propose that one of the functions of SpcM may be conferring aminoglycoside antibiotic resistance to cells.  相似文献   

8.
C A Gates  D B Northrop 《Biochemistry》1988,27(10):3826-3833
Aminoglycoside nucleotidyltransferase 2'-I conveys multiple antibiotic resistance to Gram-negative bacteria because the enzyme adenylylates a broad range of aminoglycoside antibiotics as substrates [Gates, C. A., & Northrop, D. B. (1988) Biochemistry (preceding paper in this issue)]. The enzyme also catalyzes the transfer of a variety of nucleotides [Van Pelt, J. E., & Northrop, D. B. (1984) Arch. Biochem. Biophys. 230, 250-263]. This doubly broad substrate specificity makes it an excellent candidate for application of the alternative substrate diagnostic [Radika, K., & Northrop, D. B. (1984) Anal. Biochem. 141, 413-417] as a means to determine its kinetic mechanism. The kinetic patterns presented here are composed of one set of intersecting lines and one coincident line and are consistent with a Theorell-Chance kinetic mechanism in which nucleotide binding precedes aminoglycosides, pyrophosphate is released prior to the nucleotidylated aminoglycoside (Q), and turnover is controlled by the rate-limiting release of the final product. Substrate inhibition by tobramycin (B) is partial and uncompetitive versus Mg-ATP, indicating that B binds to the EQ complex, but not in the usual dead-end fashion common to an ordered sequential release of products; instead, Q may escape from the abortive EQB complex at a finite rate. Dead-end inhibition by neomycin C (I) is also partial and uncompetitive versus Mg-ATP but is slope-linear, intercept-hyperbolic, partial noncompetitive versus gentamicin A; both kinetic patterns signify the formation of a partial abortive EQI complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The chromosomally encoded aminoglycoside N-acetyltransferase, AAC(6')-Iy, from Salmonella enterica confers resistance toward a number of aminoglycoside antibiotics. The structural gene was cloned and expressed and the purified enzyme existed in solution as a dimer of ca. 17 000 Da monomers. Acetyl-CoA was the preferred acyl donor, and most therapeutically important aminoglycosides were substrates for acetylation. Exceptions are those aminoglycosides that possess a 6'-hydroxyl substituent (e.g., lividomycin). Thus, the enzyme exhibited regioselective and exclusive acetyltransferase activity to 6'-amine-containing aminoglycosides. The enzyme exhibited Michaelis-Menten kinetics for some aminoglycoside substrates but "substrate activation" with others. Kinetic studies supported a random kinetic mechanism for the enzyme. The enzyme was inactivated by iodoacetamide in a biphasic manner, with half of the activity being lost rapidly and the other half more slowly. Tobramycin, but not acetyl-CoA, protected against inactivation. Each of the three cysteine residues (C70, C109, C145) in the wild-type enzyme were carboxamidomethylated by iodoacetamide. Cysteine 109 in AAC(6')-Iy is conserved in 12 AAC(6') enzyme sequences of the major class I subfamily. Surprisingly, mutation of this residue to alanine neither abolished activity nor altered the biphasic inactivation by iodoacetamide. The maximum velocity and V/K values for a number of aminoglycosides were elevated in this single mutant, and the kinetic behavior of substrates exhibiting linear vs nonlinear kinetics was reversed. Cysteine 70 in AAC(6')-Iy is either a cysteine or a threonine residue in all 12 AAC(6') enzymes of the major class I subfamily. The double mutant, C109A/C70A, was not inactivated by iodoacetamide. The double mutant exhibited large increases in the K(m) values for both acetyl-CoA and aminoglycoside substrates, and all aminoglycoside substrates exhibited Michaelis-Menten kinetics. Solvent kinetic isotope effects on V/K were normal for the WT enzyme and inverse for the double mutant. We discuss a chemical mechanism and the likely rate-limiting steps for both the wild-type and mutant forms of the enzyme.  相似文献   

10.
BACKGROUND: The predominant mechanism of antibiotic resistance employed by pathogenic bacteria against the clinically used aminoglycosides is chemical modification of the drug. The detoxification reactions are catalyzed by enzymes that promote either the phosphorylation, adenylation or acetylation of aminoglycosides. Structural studies of these aminoglycoside-modifying enzymes may assist in the development of therapeutic agents that could circumvent antibiotic resistance. In addition, such studies may shed light on the development of antibiotic resistance and the evolution of different enzyme classes. RESULTS: The crystal structure of the aminoglycoside-modifying enzyme aminoglycoside 6'-N-acetyltransferase type li (AAC(6')-li) in complex with the cofactor acetyl coenzyme A has been determined at 2.7 A resolution. The structure establishes that this acetyltransferase belongs to the GCN5-related N-acetyltransferase superfamily, which includes such enzymes as the histone acetyltransferases GCN5 and Hat1. CONCLUSIONS: Comparison of the AAC(6')-li structure with the crystal structures of two other members of this superfamily, Serratia marcescens aminoglycoside 3-N-acetyltransferase and yeast histone acetyltransferase Hat1, reveals that of the 84 residues that are structurally similar, only three are conserved and none can be implicated as catalytic residues. Despite the negligible sequence identity, functional studies show that AAC(6')-li possesses protein acetylation activity. Thus, AAC(6')-li is both a structural and functional homolog of the GCN5-related histone acetyltransferases.  相似文献   

11.
The nucleotide sequence of 1400 bp from R-plasmid R538-1 containing the streptomycin/spectinomycin adenyltransferase gene (aadA) was determined, and the location of the aadA gene was identified by a combination of insertion and deletion mutants. Its gene product, aminoglycoside 3"-adenylyltransferase (AAD(3")(9), has a Mr of 31,600.  相似文献   

12.
Summary The nucleotide sequence of the spc determinant of the Staphylococcus aureus transposon Tn554 has been determined. This gene encodes a spectinomycin adenyltransferase, AAD(9), that mediates resistance to spectinomycin but not to streptomycin. The sequence predicts a 260 amino acid protein of molecular weight 28,943. A spectinomycin-sensitive mutant (spc-1) contains a GA transition resulting in substitution of threonine (ACA) for alanine (GCA) at residue 165. The predicted amino acid sequence is 36% homologous to that of a widely distributed, gramnegative streptomycin/spectinomycin adenyltransferase, AAD(3) (9), specified by the aadA determinant (Holingshead and Vapnek 1985).  相似文献   

13.

Key message

A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants.

Abstract

More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6)-Ie/aph(2)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.
  相似文献   

14.
Boehr DD  Daigle DM  Wright GD 《Biochemistry》2004,43(30):9846-9855
The most common determinant of aminoglycoside antibiotic resistance in Gram positive bacterial pathogens, such as Staphylococcus aureus, is a modifying enzyme, AAC(6')-APH(2' '), capable of acetylating and phosphorylating a wide range of antibiotics. This enzyme is unique in that it is composed of two separable modification domains, and although a number of studies have been conducted on the acetyltransferase and phosphotransferase activities in isolation, little is known about the role and impact of domain interactions on antibiotic resistance. Kinetic analysis and in vivo assessment of a number of N- and C-terminal truncated proteins have demonstrated that the two domains operate independently and do not accentuate one another's resistance activity. However, the two domains are structurally integrated, and mutational analysis has demonstrated that a predicted connecting alpha-helix is especially critical for maintaining proper structure and function of both activities. AAC(6')-APH(2' ') detoxifies a staggering array of aminoglycosides, where one or both activities make important contributions depending on the antibiotic. Thus, to overcome antibiotic resistance associated with AAC(6')-APH(2' '), aminoglycosides resistant to modification and/or inhibitors against both activities must be employed. Domain-domain interactions in AAC(6')-APH(2' ') offer a unique target for inhibitor strategies, as we show that their disruption simultaneously inhibits both activities >90%.  相似文献   

15.
We determined the complete nucleotide sequence of the 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum LP-6 which encodes streptomycin, spectinomycin, and tetracycline resistance. The antibiotic resistance determinant of pTET3 comprises an intI1-like gene, which was truncated by the insertion sequence IS6100, and the novel aminoglycoside adenyltransferase gene cassette aadA9. The deduced AADA9 protein showed 61% identity and 71% similarity to AADA6 of integron In51 from Pseudomonas aeruginosa. In addition, pTET3 carries the novel repressor-regulated tetracycline resistance determinant Tet 33 which revealed amino acid sequence homology to group 1 tetracycline efflux systems. The highest level of similarity was observed to the tetracycline efflux protein TetA(Z) from the C. glutamicum plasmid pAG1 with 65% identical and 77% similar amino acids. Each antibiotic resistance region of pTET3 is flanked by identical copies of the widespread insertion sequence IS6100 initially identified in Mycobacterium fortuitum. Transposition assays with a cloned copy of IS6100 revealed that this element is transpositionally active in C. glutamicum. These data suggest a central role of IS6100 in the evolutionary history of pTET3 by mediating the cointegrative assembly of resistance gene-carrying DNA segments.  相似文献   

16.
The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.  相似文献   

17.
Seven strains ofEnterobacteriaceae resistant to gentamicin obtained as representatives of the predominant resistance profiles in the clinical laboratories ofRafeidia and Al-Watani Hospitals in Nablus (Palestine) were included. Five strains showed a broad aminoglycoside resistance profile but contained no evidence of gentamicin acetylation, adenylation, or phosphorylation. Gentamicin uptake in two tested strains was significantly reduced, compared to that of gentamicin-sensitiveE. coli (MIC, 0.5 μg/mL.) These strains are likely resistant due to a relative reduction of the amount of gentamicin and other aminoglycosides entering the bacterial cell. Two strains showed evidence of adenyltransferase ANT (2")-I activity.  相似文献   

18.
Chu X  Wu L  Liu X  Li N  Li D 《Analytical biochemistry》2008,376(1):144-150
Aminoglycosides are among the most commonly used antibiotics. The intensive use of aminoglycoside antibiotics has led to the problem of food contamination and the development of antibiotic-resistant bacteria. In the present study, we developed an effective method for easy sensitive detection of broad-spectrum aminoglycoside antibiotics. Aminoglycoside 6′-N-acetyltransferase family catalyzes the transfer of an acetyl group from acetyl coenzyme A (acetyl-CoA) to the 6 amino group of the aminoglycoside, which is one of the most widespread determinants of aminoglycoside resistance. Because acetyl-CoA is naturally present only in living organisms, it is expected that the enzyme can bind with aminoglycoside antibiotics without catalysis in vitro. The enzyme was mutated for the introduction of a cysteine residue to flexible loops close to the binding site, which was then labeled with thio-labeling reagent fluorescein-5-maleimide. The labeled enzymes were characterized with kinetic and binding studies of various known aminoglycoside antibiotics. The binding of the labeled enzyme with aminoglycoside antibiotics causes a conformational change of the enzyme, which subsequently changes the hydrophobicity and hydrophilicity environment of fluorescent labeling reagent resulting in emission of fluorescence. This study provides a sensitive detection method for residual aminoglycoside antibiotics and strategies to screen and discover new effective aminoglycoside antibiotics.  相似文献   

19.
A spectinomycin resistance mutation was isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Cell-free protein-synthesizing extracts made from cells containing the plasmid were partially resistant to spectinomycin. Although spectinomycin is an aminoglycoside antibiotic, the mutation did not confer resistance to any other aminoglycoside antibiotic tested.  相似文献   

20.
Mechanisms of high streptomycin resistance (8000 micrograms/ml) in S. derby cells carrying R plasmids were studied. The cells were isolated from clinical materials. The findings showed that the streptomycin resistance determinant in the S. derby cells was localized on the plasmid. In cell-free extracts of the strains, there was detected no inactivation of aminoglycosides by phosphorylation, adenylation and acetylation of the antibiotic molecules. The plasmid elimination from the cells of S. derby K89 by ethidium bromide resulted in loosing of streptomycin resistance by the cells. This indirectly excluded the mechanism associated with modification of the ribosomes. Streptomycin resistance in the strains studied must be due to decreased permeability of the S. derby K89 cell envelopes for streptomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号