首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg) deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 g m yr with a range of −3.7–46.0 g m yr. Atmospheric Hg dry deposition (370 kg yr) was found to be more important than wet deposition (210 kg yr) to the entire Adirondacks (2.4 million ha). The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m−2 yr−1, while the southwestern and the northern areas received Hg deposition ranging from 25–30 μg m−2 yr−1.  相似文献   

2.
Summary The seasonal pattern and quantity of litterfall were studied during a two-year period in two unthinned stands ofPinus caribaea Morelet var. hondurensis Barr. and Golf. in Nigeria. Although pine needles were cast continuously throughout the year, the peak period of litterfall occurred in the dry months of March and April. Mean values of annual litterfall were 3068 and 3665 kg/ha in the two stands aged 7–9 and 9–11 years respectively. Nutrient returns in litterfall in the stands had mean values of 15.0, 0.6, 17.3, 18.2 and 6.3 kg/ha of N, P, K, Ca and Mg respectively. Comparatively low amounts of N and P returned in litterfall were attributed to soil deficiencies of the two elements.Measurements of ground litter showed considerable dry matter accumulation (11378 kg/ha) in the litter layers. Estimates of litter decomposition rate and recycling time showed that it would take 3 to 4 years for the organic matter in annual litterfall to decompose completely as contrasted to about 2 to 5 months often reported under mixed nautral savanna vegetation in the same climatic environment. Similar estimates of nutrient recycling time also showed that between 2 to 4 years were required to mineralize nutrient elements in the annual litterfall; the relative mobilities of the elements were in the order K>Mg>P>NCa.  相似文献   

3.
We estimated the fluxes, inputs and outputs of Ca, K,and Mg in a Mexican tropical dry forest. The studywas conducted in five contiguous small watersheds(12–28 ha) gauged for long-term ecosystem research. A total of five 80 × 30 m plots were used for thestudy. We quantified inputs from the atmosphere,dissolved and particulate-bound losses, throughfalland litterfall fluxes, and standing crop litter pools. Mean cation inputs for a six-year period were 3.03 kg/ha for Ca, 1.31 kg/ha for K, and 0.80 kg/ha for Mg. Mean outputs in runoff were 5.24, 2.83, and 1.79 kg/ha, respectively. Calcium, K, and Mgconcentrations increased as rainfall moved through thecanopy. Annual Ca return in the litterfall (11.4 g/m2) was much higher than K (2.3 g/m2)and Mg (1.6 g/m2). Litterfall represented 99%of the Ca, 84% of the Mg, and 53% of the K, totalaboveground return to the soil. Calcium concentrationin standing litter (3.87%) was much higher than K(0.38%) and Mg (0.37%). These concentrations werehigher (Ca), lower (K), or similar (Mg) to those inlitterfall. Residence times on the forest floor were0.86, 1.17, and 1.77 yr for K, Mg, and Carespectively. Compared to the residence time fororganic matter at the site (1.31 yr), these resultssuggest slow mineralization for Ca in this ecosystem. Budget estimates were calculated for a wet and a dryyear. Results indicated that nutrients accumulated inthe dry but that nutrients were lost during the wetyear. Comparison of Ca, K, and Mg losses in streamwater with the input rates from the atmosphere for thesix-year period show that inputs are lower thanoutputs in the Chamela tropical dry forestecosystem.  相似文献   

4.
Global comparisons suggest that rates of N fixation in tropical rain forests may be among the highest on earth. However, data supporting this contention are rare, and the factors that regulate N fixation within the biome remain largely unknown. We conducted a full-factorial (N × P) fertilization experiment in two lowland tropical rain forests in Costa Rica to explore the effects of nutrient availability on rates of free-living N fixation in leaf litter and soil. P fertilization significantly increased N fixation rates in both leaf litter and soil, and the effect was dependent on sampling date. Fertilization with N did not affect rates of N fixation at any time. In addition, variation in N fixation rates measured in unfertilized plots at four sampling time points suggested seasonal variability in N fixation: leaf litter N fixation ranged from 0.36 kg/ha/yr in the dry season to 5.48 kg/ha/yr in the wet season. Soil N fixation showed similar patterns ranging from a dry season low of 0.26 kg/ha/yr to a wet season high of 2.71 kg/ha/yr. While the observed temporal variability suggests potential climatic control over free-living N fixation in these forests, data suggest that neither soil nor leaf litter moisture alone regulate N fixation rates. Instead, we hypothesize that a combination of ample C availability, low leaf litter N:P ratios, and high rainfall coincide during the latter portions of the rainy season and drive the highest free-living N fixation rates of the year.  相似文献   

5.
The carbon (C) and nitrogen (N) status in forest ecosystems can change upon establishment of plantations because different tree species have different nutrient cycling mechanisms. This study was carried out to evaluate C and N status of litterfall, litter decomposition and soil in three adjacent plantations consisting of one deciduous (larch: Larix leptolepis) and two evergreen (red pine: Pinus densiflora; rigitaeda pine: P. rigida × P. taeda) species planted in the same year (1963). Both the pine plantations showed comparatively higher C input from needle litter but significantly lower N concentration and input than the larch plantation (P < 0.05). During the decomposition process, the deciduous larch needle litter showed low C concentration and C remaining in soil, but high N concentration and N remaining in soil compared to the two evergreen pine needle litters. However, the soil C and N concentration and their content at a soil depth of 0–10 cm were not affected significantly (P > 0.05) by the plantation type. These results demonstrate the existence of considerable variation in C and N status resulting from needle litter input and litter decomposition in these three plantations grown at sites with similar environmental conditions.  相似文献   

6.
Summary Total above ground plant biomass in a 45 year old seasonally dry tropical hardwood forest was estimated to be approximately 56,000 kg/ha oven dry weight. Nutrients immobilized in the standing vegetation were: N, 203 kg/ha; P, 24 kg/ha; K, 234 kg/ha; Ca, 195 kg/ha; Mg, 47 kg/ha; Na, 9 kg/ha; Mn, 1 kg/ha; Cu, 0.5 kg/ha; Zn, 3 kg/ha; Fe, 4 kg/ha. Total nutrients returned each year through the litter were: N, 156 kg/ha; P, 9 kg/ha; K, 59 kg/ha; Ca, 373 kg/ha; Mg, 32 kg/ha; Na, 5 kg/ha; Mn, 1 kg/ha; Al, 21 kg/ha; Zn, 0.3 kg/ha; Fe, 9 kg/ha. Half of the nutrients immobilized in the standing vegetation were found in the leaves and are returned annually to the soil. Although litter fall is interrupted during the year, the mean nutrient content of the litter was high –5.2%.A decomposition rate of 0.48 percent per day was considered high for a seasonally dry tropical hardwood forest. Fluctuations in soil nutrient levels showed a sharp increase at the start of the rainy season. Later during the dry season nutrient levels decreased to concentrations similar to what they were just prior to the rainy season. Soil organic matter levels were very high –20% in the top 12 cm.  相似文献   

7.
Advances in the positional cloning of nodulation genes in soybean   总被引:2,自引:0,他引:2  
The effect of liming on the decomposition of Norway spruce needle litter was studied in 40–60-year-old Norway spruce stands. Finely-ground limestone had been spread about 30 years ago at a dose of 2 t ha–1 and reliming was carried out about 20 yr later at a dose of 4 t ha–1. Needle litter was collected from both control and limed plots, and it was placed in litter bags in the middle of the humus layer of the plot from which they originated, and similarly to the other plot in May. Litter bags were sampled after 4, 12 and 16 months. The site of origin of the needle litter, whether from control plot or from limed plot, affected mainly the early stages of decomposition. Initially the effect of liming was seen as decreased concentration of water soluble material and then, during decomposition, as decreased mass loss and decreased degradation of lignin, and increased C/N ratio. The incubation site, whether the control or the limed plot, did not affect decomposition significantly.Decomposition of Scots pine needles in a young Scots pine plantation was also studied. The treatments were: 2 t ha–1 of finely-ground limestone and 2.5 t ha–1 of bark ash spread 8 months before this study. The treatments did not affect decomposition much, but some stimulation of the treatments on decomposition was observed. Compared to spruce needles, the C/N ratio of pine seedles was lower, they contained less lignin and more water soluble material, and decomposed faster in the first summer.  相似文献   

8.
The feces of stream insects may be a major component of fine particulate organic matter (FPOM) available to collector organisms. In Mink Creek, Idaho, winter defecation rates for 9 species ranged from 86 mg dry feces (g dry body wt)−1 d−1 (Ephemerella spinifera) to 154 mg g−1 d−1 (Paraleptophlebia heteronea) . Detailed studies of 3 species in summer revealed that rates were much greater than in winter and exhibited high between-individual variation (e.g., 695 ± 184.8 mg (g body wt)−1 d−1 for Baetis tricaudatus ). By combining measured and literature values, it is estimated that the benthic insect community egests approximately 3.4 kg feces m−2 yr−1. This value lies within the range of FPOM estimated to be derived from degradation of leaf litter input (0.7–9.9 kg m−2 yr−1, depending upon assimilation efficiency of the organisms).
Short-term winter growth experiments showed that, with two exceptions, collectors fed on fecal detritus will grow as well as on other food resources; relative growth rates depend upon the species. Because fecal detritus is abundant throughout the year, and is treated by many species as a source of food, it could be a major mechanism by which seasonal fluctuation in availability of allochthonous litter input is minimized and homeostasis of structure and function maintained.  相似文献   

9.
The productivity and composition of two study sites in a southern Louisiana freshwater swamp were studied from October 1973 to November 1974. Net productivity was determined from measurements of litter-fall, stem growth of woody species, and harvest samples of annual herbaceous understory. Annual stem growth was calculated from biomass estimates on two different dates. The annual increase in stem biomass was 800 g dry wt/m2 for a bottomland hardwood site (BLH) and 500 g dry wt/m2 for a baldcypress-water tupelo site (CT). Litter-fall was 574 g dry wt/m2/yr for BLH and 620 g dry wt/m2/yr for CT. Harvest samples within the two plots yielded 200 g dry wt/m2 and 20 g dry wt/m2 for BLH and CT, respectively. Minimum net primary production was calculated as the sum of the three: 1574 g dry wt/m2/ yr for BLH and 1140 g dry wt/m2/yr for CT. Maximum estimates of herbaceous production and insect consumption were made by using values from the literature. Estimated total net primary productivity was 1733 g dry wt/m2/yr for BLH and 1516 g dry wt/m2/yr for CT. Tree composition was determined by the point-centered quarter method. Relative frequency, relative density, absolute density, relative dominance, and importance value (IV) were calculated for the tree species along each transect. In the bottomland hardwood area many woody species exist with Acer rubrum var. drummondii (IV = 23.9) and Nyssa aquatica (IV = 18.4) the most dominant. In the baldcypress-water tupelo area, fewer woody species exist and Taxodium distichum (IV = 39.2) and N. aquatica (IV = 37.6) dominated. Comparison of productivity data from several southeastern swamps indicate that flowing water regimes tend to result in the highest swamp forest productivity.  相似文献   

10.
James R. Vonesh 《Biotropica》2001,33(3):502-510
I compared species richness and habitat correlates of leaf‐litter herpetofaunal abundance in undisturbed and selectively logged forests, and an abandoned pine plantation in Kibale National Park, Uganda. I sampled 50 randomly located 25 m2 litter plots in each area during the wet and dry seasons in 1997. Ten anuran, five lizard, and three snake species were captured in plots over the study. Assemblage composition was most similar at logged and unlogged sites. The logged forest herpetofauna had higher species richness and abundance than the unlogged forest, but diversity was greater in the unlogged forest due to greater evenness. In contrast, the pine plantation site had the highest richness, abundance, and evenness of the three study sites, but species composition was distinct from the other areas. Herpetofaunal densities were significantly lower in all three areas during the dry season than in the wet season. During the dry season, soil moisture, litter mass, topography, shrub cover, and number of fallen logs were significant positive predictors of herpetofaunal presence in litter plots, but only soil moisture was significant in the wet season. The interaction of moisture and topography appears to be important in determining seasonal patterns of litter herpetofaunal distribution. Comparison of litter herpetofaunal studies across the tropics have shown that mid‐elevation faunas generally support fewer species than lowland faunas. Compared with other tropical mid‐elevation litter faunas, Kibale supports an intermediate number of species, but at lower densities than observed at any other mid‐elevation site reported in the literature.  相似文献   

11.
Summary Breakdown of dry matter and release of nutrients from decomposing leaf litter and forest-floor material were measured in a 34-year-old red pine (Pinus resinosa Ait.) plantation in central Wisconsin using (1) leaf-litter bags (2) litterfall and forest-floor nutrient data and an exponential decay function, and (3) nutrient flux data and a mass balance equation. After one year of decomposition, 77% of the original dry matter in leaf-litter bags remained. The release of macronutrients in decomposing leaf litter was K>Mg>P, S>N>Ca, and the release of micronutrients and aluminum was Mn, B>Al>Cu>Zn. Nitrogen in decomposing leaf litter showed the leaching, accumulation, and final release phases delineated by Berg and Staff4. Half-lives of dry matter and nutrients in the forest floor ranged from 0.5 (K) to 39 (Al) yr. Forest-floor turnover rates of the various elements followed the same trends as in leaf-litter bags except that Ca turned over more readily than P, S, and N and Zn turned over more readily than the other micronutrients. A forest-floor nutrient balance sheet confirmed that the macronutrients N and Ca are accumulating most readily in the forest floor. The overall implications of these trends for tree nutrition are discussed.  相似文献   

12.
Litter quality in a north European transect versus carbon storage potential   总被引:8,自引:0,他引:8  
Berg  Björn  Meentemeyer  Vernon 《Plant and Soil》2002,242(1):83-92
Newly shed foliar plant litter often has a decomposition rate of ca 0.1–0.2% day–1, which decreases greatly with time and may reach 0.0001 to 0.00001% day–1 or lower in litter material in the last stages of decay. The decrease in decomposability (substrate quality) varies among species and is complex, involving both direct chemical changes in the substrate itself and the succession in microorganisms able to compete for substrate with a given chemical composition. In late stages, the decomposition appears very little affected by climate, suggesting that climate change will have little effect on late-stages decomposition rates. Here, we apply a model for the late stages of litter decomposition to address the question of climate-change effects on soil-C storage. Decomposition of litter turning into soil organic matter (SOM) is determined by the degradation rate of lignin. In the last phases of decay, raised N concentrations have a rate-retarding effect on lignin degradation and thus on the decomposition of far-decomposed litter and litter in near-humus stages. The retardation of the decomposition rate in late stages may be so strong that decomposition reaches a limit value at which total mass losses virtually stop. At such a stage the remaining litter would be close to that of stabilized SOM. The estimated limit values for different species range from about 45 to 100% decomposition indicating that between 0 and 55% should either be stabilized or decompose extremely slowly. For no less than 106 long-term studies on litter decomposition, encompassing 21 litter types, limit values were significantly and negatively related to N concentration, meaning that the higher the N concentration in the newly shed litter (the lower the C/N ratio) the more litter was left when it reached its limit value. Trees growing under warmer and wetter climates (higher actual evapotranspiration, AET) tend to shed foliar litter more rich in N than those growing under colder and drier climates. A change in climate resulting in higher AET would thus mean that within species, e.g., Scots pine, a higher N level in the foliar litter may result. Further, within the boreal system deciduous species appear to have foliar litter richer in N than have conifers and within the conifers group, Norway spruce has needle litter more rich in N than, e.g., Scots pine. Thus, a change of species (e.g., by planting) from pine to spruce or from spruce to a deciduous species such as birch may result in a higher N level in the litter fall at a given site. In both cases the result would be a lower limit value for decomposition. The paper presents an hypothesis, largely based on available data that a change in climate of 4° higher annual average temperature and 40% higher precipitation in the Baltic basin would result in higher N levels in litter, lower decomposition and thus a considerable increase in humus accumulation.  相似文献   

13.
Chertov  O. G.  Komarov  A. S.  Tsiplianovsky  A. M. 《Plant and Soil》1999,213(1-2):31-41
The individual-based combined forest model EFIMOD including the soil-sub model SOMM has been used for the simulation of Scots pine stand growth and soil organic matter (SOM) accumulation on a humus-free bare mineral surface. The growth of Scots pine plantation, with an initial density of 10 000 trees ha−1 and average tree biomass of 0.01 kg was simulated for 50 yr under Central European climatic conditions (i) with varying atmospheric nitrogen inputs and (ii) different rates of initial application of raw undecomposed organic material or compost, on humus-free parent material. The accumulation of typical raw humus was simulated in all cases. The accumulation was most intensive in the simulation of high atmospheric nitrogen input. The humus pool in the mineral topsoil was small but achieved its maximum value with compost application. SOM nitrogen accumulation was scant in all cases, except the compost applications with low atmospheric nitrogen input. No statistically significant differences of SOM and stand parameters were found between variants without organic matter and those with low input of organic manure. However, the maximum relative rate of SOM and nitrogen accumulation was found in the scenario without organic manure, under slowly growing unstable Scots pine plantation. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
东灵山林区不同森林植被水源涵养功能评价   总被引:17,自引:4,他引:13  
莫菲  李叙勇  贺淑霞  王晓学 《生态学报》2011,31(17):5009-5016
森林植被发挥着涵养水源的作用,主要表现在以下几个方面:对降水的截留与再分配;调节河川径流,调节林内小气候,减小林内地表蒸发,改善土壤结构,减少地表侵蚀等. 通过对几种林分各层拦蓄降水和保土功能指标定性评价的基础上,用综合评定法对不同林分水源涵养和保土功能进行综合评价,选择出综合功能最好的林分,以期为北京山区的生态环境建设、植被恢复与保护提供一定的依据。在测定东灵山4种森林植被林冠层、枯枝落叶层和土壤层蓄水和土壤保持功能指标的基础上,采用综合评定法对4种森林植被水源涵养和土壤保持功能进行了评价。结果表明:各植被类型的林冠层截留各不相同,在雨季(6-9 月份) 辽东栎林的截留率最大,华北落叶松的最小;枯落物最大持水深以辽东栎林的最大,油松的最小;土壤水文特性各异,0-80 cm 土层平均容重以落叶阔叶林的最小,华北落叶松的最大;稳渗速率以落叶阔叶林的最大,油松的最小,初渗速率以辽东栎林的最大,油松的最小。不同林分水源涵养和土壤保持综合能力由大到小顺序为落叶阔叶混交林、辽东栎林、华北落叶松林、油松林。常绿阔叶灌丛水源涵养和土壤保持综合能力评价值(0.1039) 比其它植被类型少3个数量级,说明其水源涵养和土壤保持功能明显优于其它植被类型。由此可见,树种组成丰富、林下灌草盖度高、枯落物储量多的落叶阔叶混交林水源涵养和土壤保持能力最强,优于单一的阔叶林,而油松林最差。  相似文献   

15.
The aim of this paper was to study the influence of environmental characteristics of the Mediterranean climate on seasonal variability of particulate organic matter abundance in a mountain stream. Coarse and fine fractions of both suspended and benthic particulate organic matter were determined on 14 occasions between February 1998 and November 1999 in a second‐order Mediterranean stream in Central Spain (Arroyo Mediano). Temporal variability of suspended organic matter followed a seasonal pattern, attributed to litter‐fall inputs, instream processing, and the hydrological regime. Suspended organic matter (SOM) and its seasonal variability fall well within the range reported for streams in temperate non‐Mediterranean deciduous forest. However, we found no seasonal trend in benthic organic matter (BOM) storage, and it seems that the amount of BOM remained fairly constant throughout the year. Reach retention (evaluated as the ratio between BOM and SOM per m2) was higher in summer during reduced stream flow, mainly due to coarse particulate organic matter storage. These observations do not differ from those reported for other headwater streams in temperate forested biomes, from which we conclude that there was no evidence of a Mediterranean influence on particulate organic matter dynamics in the Mediano stream, nor probably in other headwater Mediterranean streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
土壤有机碳是土壤碳库的重要组成部分,对生态系统生产力和全球碳循环有着重要作用。采用凋落物收集器和DIRT法(添加和去除凋落物法)研究三工河流域两处不同琵琶柴群落凋落物的产量、现存量、凋落物处理对土壤有机碳的影响。结果表明:群落1和群落2的凋落物产量季节变化趋势相同,均呈"N"型变化,在10月份达到最大值,7月或8月份达到次大值。凋落物现存量随季节均呈现"W"型变化,在10月份达到最大值,最大值分别为30.65 g/m~2和57.87 g/m~2。土壤有机碳随土壤深度的增加均逐渐降低,群落1和群落2分别下降了61.73%—62.39%和18.24%—25.84%。与对照处理相比,去除凋落物处理(NL)的群落1和群落2土壤有机碳分别降低了6.97%和18.38%;添加凋落物处理(DL)的土壤有机碳分别增加了19.64%和13.66%;去除凋落物处理(NL)的群落1和群落2土壤有机碳储量分别为1007.36 kg/hm~2和709.30 kg/hm~2,添加凋落物处理(DL)的土壤有机碳储量分别为1197.88 kg/hm~2和1010.78 kg/hm~2。双因素方差分析表明群落1的土层深度和三种处理对土壤有机碳的交互作用不显著,群落2的交互作用显著。回归分析显示:土壤水分、电导率、pH、容重和温度是导致两琵琶柴群落土壤有机碳不同的主要生态因子。相对较高的土壤pH和盐分含量抑制了凋落物的分解,导致凋落物现存量较高、土壤有机碳含量低;相对较高的土壤含水量和较小的容重,有利于土壤生物的活性和土壤有机碳的矿化,导致土壤有机碳含量降低。  相似文献   

17.
This study was carried out to compare the ecological function of exotic pine (Pinus radiata—Pr) and native pine (Pinus tabulaeformis—Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana—Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt + Cj; Pr + Cj; Pt + Od; Pr + Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.  相似文献   

18.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

19.
Litter and wet traps were employed to determine the inputs of coarse organic matter (empneuston), total organic carbon, total nitrogen and phosphorus through dry fallout and precipitation to a soft-water, mesotrophic lake. The dispersal of airborne material over the lake surface was investigated, and a method for the calculation of total input was developed. The component of the particulate matter larger than 1 mm contained the largest proportion of organic carbon, while the dissolved and the fine particle (smaller than 1 mm) fractions made greater contributions to the inputs of nitrogen and phosphorus compounds. The importance of the large particle fraction of the airborne organic matter in the lake's nutrient budget during the autumnal fall of litter was confirmed. However, the maximum total airborne input seems to occur during spring and summer. The input of phosphorus compounds through the atmosphere to small forest lakes is large compared to that from other sources. Airborne material accounts for 39% of the total phosphorus loading.  相似文献   

20.
Aim The aim of this work was to estimate C sequestration rates in the organic matter layer in Swedish forests. Location The region encompassed the forested area (23 × 106 ha) of Sweden ranging from about 55° N to 69° N. Methods We used the concept of limit values to estimate recalcitrant litter remains, and combined it with amount of litter fall. Four groups of tree species were identified (pine, spruce, birch and ‘other deciduous species’). Annual actual evapotranspiration (AET) was estimated for 5 × 5 km grids covering Sweden. For each grid, data of forested area and main species composition were available. The annual input of foliar litter into each grid was calculated using empirical relationships between AET and foliar litter fall in the four groups. Litter input was combined with average limit values for decomposition for the four groups of litter, based on empirical data. Finally, C sequestration rate was calculated using a constant factor of the C concentration in the litter decomposed to the limit value, thus forming soil organic matter (SOM). Results We obtained a value of 4.8 × 106 metric tons of C annually sequestered in SOM in soils of mature forests in Sweden, with an average of 180 kg ha?1 and a range from 40 to 410 kg ha?1. Norway spruce forests accumulated annually an average of 200 kg C ha?1. The pine and birch groups had an average of 150 kg ha?1 and for the group of other deciduous trees, which is limited to south Sweden, the C sequestration was around 400 kg ha?1. Conclusions There is a clear C sequestration gradient over Sweden with the highest C sequestration in the south‐west, mainly corresponding to the gradient in litter fall. The limit‐value method appears useful for scaling up to a regional level to describe the C sequestration in SOM. A development of the limit value approach in combination with process‐orientated dynamic models may have a predictive value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号