首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A genetic linkage map of the tetraploid white yam (Dioscorea rotundata Poir.) was constructed based on 341 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 mapping population was produced by crossing a landrace cultivar TDr 93-1 as female parent to a breeding line TDr 87/00211 as the male parent. The marker segregation data were split into maternal and paternal data sets, and separate genetic linkage maps were constructed since the mapping population was an F1 cross between two presumed heterozygous parents. The markers segregated like a diploid cross-pollinator population suggesting that the D. rotundata genome is an allo-tetraploid (2n = 4x = 40). The maternal map comprised 155 markers mapped on 12 linkage groups with a total map length of 891 cM. Three linkage groups consisted of maternal parent markers only. The paternal map consisted of 157 markers mapped on 13 linkage groups with a total map length of 852 cM. Three and one quantitative trait loci (QTLs) with effects on resistance to Yam Mosaic Virus (YMV) were identified on the maternal and paternal linkage maps, respectively. Prospects for detecting more QTLs and using marker-assisted selection in white yam breeding appear good, but this is subject to the identification of additional molecular markers to cover more of the genome.  相似文献   

2.
Anthracnose, caused by Colletotrichum gloeosporioides, is the most severe foliar disease of water yam (Dioscorea alata) worldwide. The tetraploid breeding line, TDa 95/00328, is a source of dominant genetic resistance to the moderately virulent fast growing salmon (FGS) strain of C. gloeosporioides. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to anthracnose resistance in F1 progeny derived from a cross between TDa 95/00328 and the susceptible male parent, TDa 95–310. Two hundred and eighty decamer primers were screened using bulks obtained from pooled DNA of individuals comprising each extreme of the disease phenotype distribution. A single locus that contributes to anthracnose resistance in TDa 95/00328 was identified and tentatively named Dcg‐1. We found two RAPD markers closely linked in coupling phase with Dcg‐1, named OPI71700 and OPE6950, both of which were mapped on the same linkage group. OPI71700 appeared tightly linked to the Dcg‐1 locus; it was present in all the 58 resistant F1 individuals and absent in all but one of the 13 susceptible genotypes (genetic distance of 2.3 cM). OPE6950 was present in 56 of the 58 resistant progeny and only one susceptible F1 plant showed this marker (6.8 cM). Both markers successfully identified Dcg‐1 in resistant D. alata genotypes among 34 breeding lines, indicating their potential for use in marker‐assisted selection. OPI71700 and OPE6950 are the first DNA markers for yam anthracnose resistance. The use of molecular markers presents a valuable strategy for selection and pyramiding of anthracnose resistance genes in yam improvement.  相似文献   

3.
Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. 2 P. elliottii Engl.) and a recurrent slash pine tree (P. elliottii Engl.) in a (longleaf pine 2 slash pine) 2 slash pine BC1 family consisting of 258 progeny. Of the 150 hybrid F1 parent-specific RAPD markers, 133 were mapped into 17 linkage groups covering a genetic distance of 1,338.2 cM. Of the 116 slash pine parent-specific RAPD markers, 83 were mapped into 19 linkage groups covering a genetic distance of 994.6 cM. A total of 11 different marker intervals were found to be significantly associated with 13 of the 20 traits on height and diameter growth using MAPMAKER/QTL. Nine of the eleven marker intervals were unique to the hybrid parent 488 genome, and two were unique to the recurrent parent 18-27 genome. The amount of phenotypic variance explained by the putative QTLs ranged from 3.6% to 11.0%. Different QTLs were detected at different ages. Two marker intervals from the hybrid parent 488 were found to have QTL by environment interactions.  相似文献   

4.
Sugar beet (Beta vulgaris L.) is a biennial species. Shoot elongation (bolting) starts after a period of low temperature. The dominant allele of locus B causes early bolting without cold treatment. This allele is abundant in wild beets whereas cultivated beets carry the recessive allele. Fifteen AFLP markers, tightly linked to the bolting locus, have been identified using bulked segregant analysis. The F2-population consisted of 2,134 individuals derived after selfing a single F1-plant (Bb). In a first step, a linkage map was established with 249 markers based on 775 F2-individuals with a coverage of 822.3 cM. The loci are dispersed over nine linkage groups corresponding to the haploid chromosome number of Beta species. Seventeen marker loci were placed at a distance less than 3.2 cM around the bolting gene. In a second step, four of those markers most closely linked to B were mapped with the entire F2-population. Two of the markers were mapped flanking the B gene at distances of 0.14 and 0.23 cM. The other two markers were mapped at a distance of 0.5 cM from the gene. The tight linkage could be verified by testing 88 unrelated plants from a breeding program. The closely linked markers will enable breeders to select for the non-bolting character without laborious test crossings. Moreover, these markers are being used for map-based cloning of the bolting gene.  相似文献   

5.
Genetic linkage maps have been increasingly developed for a wide variety of plants, using segregating populations such as F2s or backcrosses between inbred lines. These pedigrees are rarely available in outbred species like forest trees which have long generation times. Thus genetic mapping studies have to use peculiar pedigrees and markers in appropriate configurations. We constructed single-tree genetic linkage maps of European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr.] using segregation data from 112 progeny individuals of an hybrid family. A total of 266 markers (114 AFLP, 149 RAPD and 3 ISSR loci) showing a testcross configuration, i.e.heterozygous in one parent and null in the other parent, were grouped at LOD 4.0, θ=0.3. The maternal parent map (L. decidua)consisted of 117 markers partitioned within 17 linkage groups (1152 cM) and the paternal parent map (L. kaempferi) had 125 markers assembled into 21 linkage groups (1206 cM). The map distance covered by markers was determined by adding a 34.7-cM independence distance at the end of each group and unlinked marker. It reached 2537 cM and 2997 cM respectively for European larch and Japanese larch, and represented respectively a 79.6% and 80.8% coverage of the overall genome. A few 3:1 segregating markers were used to identify homologous linkage groups between the European larch and the Japanese larch genetic maps. The PCR-based molecular markers allowed the construction of genetic maps, thus ensuring a good coverage of the larch genome for further QTL detection and mapping studies. Received: 15 March 1999 / Accepted: 29 March 1999  相似文献   

6.
AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection. Received: 13 July 2000 / Accepted: 19 January 2001  相似文献   

7.
A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.  相似文献   

8.
Culex pipiens pallens is the most abundant Culex mosquito species in northern China and is an important vector of bancroftian filariasis and West Nile virus. Deltamethrin is an insecticide that is widely used for mosquito control, however resistance to this and other insecticides has become a major challenge in the control of vector-borne diseases that appear to be inherited quantitatively. Furthermore, the genetic basis of insecticide resistance remains poorly understood. In this study, quantitative trait loci (QTL) mapping of resistance to deltamethrin was conducted in F2 intercross segregation populations using bulked segregation analysis (BSA) and amplified fragment length polymorphism markers (AFLP) in Culex pipiens pallens. A genetic linkage map covering 381 cM was constructed and a total of seven QTL responsible for resistance to deltamethrin were detected by composite interval mapping (CIM), which explained 95% of the phenotypic variance. The major QTL in linkage group 2 accounted for 62% of the variance and is worthy of further study. 12 AFLP markers in the map were cloned and the genomic locations of these marker sequences were determined by applying the Basic Local Alignment Search Tool (BLAST) tool to the genome sequence of the closely related Culex quinquefasciatus. Our results suggest that resistance to deltamethrin is a quantitative trait under the control of a major QTL in Culex pipiens pallens. Cloning of related AFLP markers confirm the potential utility for anchoring the genetic map to the physical map. The results provide insight into the genetic architecture of the trait.  相似文献   

9.
The linkage maps of male and female tiger shrimp (P. monodon) were constructed based on 256 microsatellite and 85 amplified fragment length polymorphism (AFLP) markers. Microsatellite markers obtained from clone sequences of partial genomic libraries, tandem repeat sequences from databases and previous publications and fosmid end sequences were employed. Of 670 microsatellite and 158 AFLP markers tested for polymorphism, 341 (256 microsatellite and 85 AFLP markers) were used for genotyping with three F1 mapping panels, each comprising two parents and more than 100 progeny. Chi‐square goodness‐of‐fit test (χ2) revealed that only 19 microsatellite and 28 AFLP markers showed a highly significant segregation distortion (P < 0.005). Linkage analysis with a LOD score of 4.5 revealed 43 and 46 linkage groups in male and female linkage maps respectively. The male map consisted of 176 microsatellite and 49 AFLP markers spaced every ~11.2 cM, with an observed genome length of 2033.4 cM. The female map consisted of 171 microsatellite and 36 AFLP markers spaced every ~13.8 cM, with an observed genome length of 2182 cM. Both maps shared 136 microsatellite markers, and the alignment between them indicated 38 homologous pairs of linkage groups including the linkage group representing the sex chromosome. The karyotype of P. monodon is also presented. The tentative assignment of the 44 pairs of P. monodon haploid chromosomes showed the composition of forty metacentric, one submetacentric and three acrocentric chromosomes. Our maps provided a solid foundation for gene and QTL mapping in the tiger shrimp.  相似文献   

10.
Ma H  Chen S  Yang J  Chen S  Liu H 《Molecular biology reports》2011,38(7):4749-4764
Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two economically important marine fish species for aquaculture in China, Korea and Japan. Construction of genetic linkage maps is an interesting issue for molecular marker-assisted selection (MAS) and for better understanding the genome structure. In the present study, we constructed genetic linkage maps for both fish species using AFLP and microsatellite markers based on an interspecific F1 hybrid family (female V. moseri and male V. variegatus). The female genetic map comprised 98 markers (58 AFLP markers and 40 microsatellite markers), distributing in 27 linkage groups, and spanning 637 cM with an average resolution of 8.9 cM. Whereas the male genetic map consisted of 86 markers (48 AFLP and 38 microsatellite markers) in 24 linkage groups, covering a length of 625 cM with an average marker spacing of 10 cM. The expected genome length was 1,128 cM in female and 1,115 cM in male, and the estimated coverage of genome was 56% for both genetic maps. Moreover, five microsatellite markers were observed to be common to both genetic maps. This is the first time to report the genetic linkage maps of V. moseri and V. variegatus that could serve as the basis for genetic improvement and selective breeding, candidate genes cloning, and genome structure research.  相似文献   

11.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

12.
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F1 family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (α = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.  相似文献   

13.
We developed a genetic linkage map of sweetpotato using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers and a mapping population consisting of 202 individuals derived from a broad cross between Xushu 18 and Xu 781, and mapped quantitative trait loci (QTL) for the storage root dry-matter content. The linkage map for Xushu 18 included 90 linkage groups with 2077 markers (1936 AFLP and 141 SSR) and covered 8,184.5 cM with an average marker distance of 3.9 cM, and the map for Xu 781 contained 90 linkage groups with 1954 markers (1824 AFLP and 130 SSR) and covered 8,151.7 cM with an average marker distance of 4.2 cM. The maps described herein have the best coverage of the sweetpotato genome and the highest marker density reported to date. These are the first maps developed that have 90 complete linkage groups, which is in agreement with the actual number of chromosomes. Duplex and triplex markers were used to detect the homologous groups, and 13 and 14 homologous groups were identified in Xushu 18 and Xu 781 maps, respectively. Interval mapping was performed first and, subsequently, a multiple QTL model was used to refine the position and magnitude of the QTL. A total of 27 QTL for dry-matter content were mapped, explaining 9.0–45.1 % of the variation; 77.8 % of the QTL had a positive effect on the variation. This work represents an important step forward in genomics and marker-assisted breeding of sweetpotato.  相似文献   

14.
Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics that also receives growing attention in genetic research. A comprehensive reference map of the sorghum genome would be an essential research tool. Here, a combined sorghum linkage map from two recombinant inbred populations was constructed using AFLP, SSR, RFLP and RAPD markers. The map was aligned with other published sorghum maps which are briefly reviewed. The two recombinant inbred populations (RIPs) analyzed in this study consisted of 225 (RIP 1) and 226 (RIP 2) F3:5 lines, developed from the crosses IS 9830 2 E 36-1 (RIP 1) and N 13 2 E 36-1 (RIP 2), respectively. The genetic map of RIP 1 had a total length of 1,265 cM (Haldane), with 187 markers (125 AFLPs, 45 SSRs, 14 RFLPs, 3 RAPDs) distributed over ten linkage groups. The map of RIP 2 spanned 1,410 cM and contained 228 markers (158 AFLPs, 54 SSRs, 16 RFLPs) in 12 linkage groups. The combined map of the two RIPs contained 339 markers (249 AFLPs, 63 SSRs, 24 RFLPs, 3 RAPDs) on 11 linkage groups and had a length of 1,424 cM. It was in good agreement with other sorghum linkage maps, from which it deviated by a few apparent inversions, deletions, and additional distal regions.  相似文献   

15.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

16.
To establish a molecular‐marker‐assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular‐marker‐assisted breeding for Laminaria.  相似文献   

17.
构建高密度遗传连锁图谱是冰草抗性、品质、产量等重要性状QTL精细定位及标记辅助育种研究的基础。该试验以四倍体杂交冰草F2群体的202个分离单株及其亲本为材料,利用SRAP分子标记技术和Join Map 4.0作图软件对冰草的遗传连锁图谱进行了构建。结果表明:(1)共筛选出22对多态性好、标记位点清晰稳定的SRAP适宜引物,对冰草杂种F2分离单株的基因组DNA进行PCR扩增,共获得510个SRAP多态性标记位点,其比率占88.2%。(2)偏分离分析表明,偏分离标记比率仅为14.12%,符合遗传作图的要求。(3)成功构建了冰草的SRAP分子标记遗传连锁图谱,该图谱有14个连锁群、510个标记,连锁群间长度范围86.4~179.0cM,覆盖基因组总长度1 912.9cM,标记间平均间距3.75cM,为高密度遗传图谱。  相似文献   

18.
In this study, totally 54 selected polymorphic SSR loci of Chinese shrimp (Fenneropenaeus chinensis), in addition with the previous linkage map of AFLP and RAPD markers, were used in consolidated linkage maps that composed of SSR, AFLP and RAPD markers of female and male construction, respectively. The female linkage map contained 236 segregating markers, which were linked in 44 linkage groups, and the genome coverage was 63.98%. The male linkage map contained 255 segregating markers, which were linked in 50 linkage groups, covering 63.40% of F. chinensis genome. There were nine economically important traits and phenotype characters of F. chinensis were involved in QTL mapping using multiple-QTL mapping strategy. Five potential QTLs associated with standard length (q-standardl-01), with cephalothorax length (q-cephal-01), with cephaloghorax width (q-cephaw-01), with the first segment length (q-firsel-01) and with anti-WSSV (q-antiWSSV-01) were detected on female LG1 and male LG44 respectively with LOD > 2.5. The QTL q-firsel-01 was at 73.603 cM of female LG1. Q-antiWSSV-01 was at 0 cM of male LG44. The variance explained of these five QTLs was from 19.7–33.5% and additive value was from −15.9175 to 7.3675. The closest markers to these QTL were all SSR, which suggested SSR marker was superior to AFLP and RAPD in the QTL mapping.  相似文献   

19.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

20.
大豆遗传图谱的构建和分析   总被引:47,自引:2,他引:45  
利用大豆栽培品种科丰1号和南农1138-2杂交得到的重组近交系NJRIKY,通过RFLP,SSR,RAPD和AFLP4种分子标记的遗传连锁分析,构建了包含24个连锁群,由792个遗传标记组成的大豆较高密度连锁图谱,该图谱覆盖2320.7cM,平均图距2.9cM,SSR标记的多态性较高,在基因组中的位置相对稳定,可以作为锚定标记,有利于连锁群的归并和不同图谱的比较整合;而AFLP标记对于增加图谱密度效率较高,但其容易出现聚集现象,从而造成连锁群上有很大的空隙(gap),另外,在连锁群中有21.7%的分子标记出现偏分离,该图谱为基因定位,比较基因组学和重要农艺性状的QTL定位等研究打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号