首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. The metabolic encephalopathy caused by thiamine deficiency (TD) is a classic example in which an impairment of cerebral oxidative metabolism leads to selective cell death. In experimental TD in rodents, a reduction in the activity of the thiamine diphosphate-dependent, mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) occurs before the onset of pathologic lesions and is among the earliest biochemical deficits found. To understand the molecular basis and the significance of the deficiency of KGDHC in TD-induced brain damage, the enzyme activity and protein levels of KGDHC were analyzed. The effect of TD on the subregional/cellular distribution of KGDHC and the anatomic relation of KGDHC with selective cell death were also tested by immunocytochemistry. Consistent with several previous studies, TD dramatically reduced KGDHC activity in both anatomically damaged (thalamus and inferior colliculus) and spared (cerebral cortex) regions. Immunocytochemistry revealed no apparent correlation of regional KGDHC immunoreactivity or its response to TD with affected regions in TD. The basis of the enzymatic and immunocytochemical behavior of KGDHC was further assessed by quantitative immunoblots, using antibodies specific for each of the three KGDHC components. Despite the marked decrease of KGDHC activity in TD, no reduction of any of the three KGDHC protein levels was found. Thus, TD impairs the efficacy of the KGDHC catalytic machinery, whereas the concentration of protein molecules persists. The generalized decline of KGDHC activity with no apparent anatomic selectivity is consistent with the notion that the compromised mitochondrial oxidation sensitizes the brain cells to various other insults that precipitate the cell death. The current TD model provides a relevant experimental system to understand the molecular basis of many neurodegenerative conditions in which mitochondrial dysfunction and KGDHC deficiency are prominent features.  相似文献   

2.
Abnormalities in oxidative metabolism and inflammation accompany many neurodegenerative diseases. Thiamine deficiency (TD) is an animal model in which chronic oxidative stress and inflammation lead to selective neuronal death, whereas other cell types show an inflammatory response. Therefore, the current studies determined the response of different brain cell types to TD and/or inflammation in vitro and tested whether their responses reflect inherent properties of the cells. The cells that have been implicated in TD-induced neurotoxicity, including neurons, microglia, astrocytes, and brain endothelial cells, as well as neuroblastoma and BV-2 microglial cell lines, were cultured in either thiamine-depleted media or in normal culture media with amprolium, a thiamine transport inhibitor. The activity levels of a key mitochondrial enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), were uniquely distributed among different cell types: The highest activity was in the endothelial cells, and the lowest was in primary microglia and neurons. The unique distribution of the activity did not account for the selective response to TD. TD slightly inhibited general cellular dehydrogenases in all cell types, whereas it significantly reduced the activity of KGDHC exclusively in primary neurons and neuroblastoma cells. Among the cell types tested, only in neurons did TD induce apoptosis and cause the accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation product. On the other hand, chronic lipopolysaccharide-induced inflammation significantly inhibited cellular dehydrogenase and KGDHC activities in microglia and astrocytes but not in neurons or endothelial cells. The results demonstrate that the selective cell changes during TD in vivo reflect inherent properties of the different brain cell types.  相似文献   

3.
4.
Parkinson's disease (PD) is associated with mitochondrial dysfunction, specifically a deficiency of complex I of the electron transport chain. Most, although not all, studies indicate that this deficiency is limited to brain regions with neurodegeneration. The current studies tested for deficiencies in other mitochondrial components in PD brain in a neuropathologically unaffected region where the abnormality cannot be attributed to secondary effects of neurodegeneration. The activity of a key (and arguably rate-limiting) tricarboxylic acid cycle enzyme, the alpha-ketoglutarate dehydrogenase complex (KGDHC), was measured in the cerebellum of patients with PD. Activity in 19 PD brains was 50.5% of that in 18 controls matched for age, sex, post-mortem interval, and method of preservation (P<0.0019). The protein subunits of KGDHC were present in normal amounts in PD brains, indicating a relatively discrete abnormality in the enzyme. The activities of another mitochondrial enzyme, glutamate dehydrogenase (GDH), were normal in PD brains. These results demonstrate that specific reductions in KGDHC occur even in pathologically unaffected areas in PD, where the decline is unlikely to be a non-specific result of neurodegeneration. Reductions in the activity of this enzyme, if widespread in the brain, may predispose vulnerable regions to further damage.  相似文献   

5.
Bunik VI  Denton TT  Xu H  Thompson CM  Cooper AJ  Gibson GE 《Biochemistry》2005,44(31):10552-10561
The alpha-ketoglutarate dehydrogenase complex (KGDHC), a control point of the tricarboxylic acid cycle, is partially inactivated in brain in many neurodegenerative diseases. Potent and specific KGDHC inhibitors are needed to probe how the reduced KGDHC activity alters brain function. Previous studies showed that succinyl phosphonate (SP) effectively inhibits muscle and Escherichia coli KGDHC [Biryukov, A. I., Bunik, V. I., Zhukov, Yu. N., Khurs, E. N., and Khomutov, R. M. (1996) FEBS Lett. 382, 167-170]. To identify the phosphonates with the highest affinity toward brain KGDHC and with the greatest effect in living cells, we investigated the ability of SP and several of its ethyl esters to inhibit brain KGDHC, other alpha-keto acid-dependent enzymes, and KGDHC in intact cells. At a concentration of 0.01 mM, SP and its phosphonoethyl (PESP) and carboxyethyl (CESP) esters completely inhibited isolated brain KGDHC even in the presence of a 200-fold higher concentration of its substrate [alpha-ketoglutarate (KG)], while the diethyl (DESP) and triethyl (TESP) esters were ineffective. In cultured human fibroblasts, 0.01 mM SP, PESP, or CESP produced 70% inhibition of KGDHC. DESP and TESP were also inhibitory in the cell system, but only after preincubation, suggesting the release of their charged groups by cellular esterases. Thus, SP and its monoethyl esters target cellular KGDHC directly, while the di- and triethyl esters are activated in intact cells. When tested on other enzymes that bind KG or related alpha-keto acids, SP had minimal effects and its two esters (CESP and TESP) were ineffective even at a concentration (0.1 mM) 1 order of magnitude higher than that which inhibited cellular KGDHC activity. The high specificity in targeting KGDHC, penetration into cells, and minimal transformation by cellular enzymes indicate that SP and its esters should be useful in studying the effects of reduced KGDHC activity on neuronal and brain function.  相似文献   

6.
The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.  相似文献   

7.
Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.  相似文献   

8.
Altered energy metabolism is characteristic of many neurodegenerative disorders. Reductions in the key mitochondrial enzyme complex, the alpha-ketoglutarate dehydrogenase complex (KGDHC), occur in a number of neurodegenerative disorders including Alzheimer's Disease (AD). The reductions in KGDHC activity may be responsible for the decreases in brain metabolism, which occur in these disorders. KGDHC can be inactivated by several mechanisms, including the actions of free radicals (Reactive Oxygen Species, ROS). Other studies have associated specific forms of one of the genes encoding KGDHC (namely the DLST gene) with AD, Parkinson's disease, as well as other neurodegenerative diseases. Reductions in KGDHC activity can be plausibly linked to several aspects of brain dysfunction and neuropathology in a number of neurodegenerative diseases. Further studies are needed to assess mechanisms underlying the sensitivity of KGDHC to oxidative stress and the relation of KGDHC deficiency to selective vulnerability in neurodegenerative diseases.  相似文献   

9.
Measures in autopsied brains from Alzheimer's Disease (AD) patients reveal a decrease in the activity of alpha-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H(2)O(2) and to probe the mechanism underlying these changes. Since the response to H(2)O(2) is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one-hour treatment with H(2)O(2) decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H(2)O(2) inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H(2)O(2) converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H(2)O(2) diminished glutathione to a similar level after 24 h. However, H(2)O(2), but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H(2)O(2) together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes.  相似文献   

10.

Background

Thiamine is an essential cofactor associated with several enzymes in energy metabolism and its deficiency may lead to neurological deficits. Current research evaluated the biochemical and molecular changes in TCA cycle enzymes using the mitochondrial fraction of the brain following thiamine deficiency (TD) in mice.

Methods

The investigation was carried out on Swiss mice (6-8 week old) allocated into three groups. First group was control; second and third group were made thiamine deficient for 8 and 10 days.

Results

Current study showed that alpha-ketoglutarate dehydrogenase (KGDHC) (thiamine-dependent enzyme) level found to be significantly reduced in experimental groups as compared to control group. In comparison to control group, a significant decrease in the succinate dehydrogenase (SDH) activity was calculated in group II and group III (p<0.0001) mice. Diminished enzymatic activity of fumarase and MDH enzyme in thiamine deficient groups exposed for 8 and 10 days was calculated as compared to control group. The expression analysis of different genes governing TCA cycle enzymes in different experimental groups showed that there was a negotiable change in the expression of fumarase and DLD (dihydrolipoyl dehydrogenase- E3 subunit of KGDHC) whereas a declined in the expression of SDH and two subunits of KGDHC i.e. OGDH (2-oxoglutarate dehydrogenase- E1 subunit of KGDHC) and DLST (dihydrolipoyllysine-residue succinyltransferase- E2 subunit of KGDHC) was observed as compared to control group.

Conclusions

Hence, current findings strongly entail that TD promotes alteration in energy metabolism in brain mitochondria which will decline the neuronal progression which may lead to neurodegenerative diseases such as Alzheimer’s diseases.
  相似文献   

11.
Abstract: To elucidate the cellular location of mitochondrial malic enzyme in brain, immunocytochemical studies were performed. For this purpose, mitochondrial malic enzyme was purified to apparent homogeneity from bovine brain and used for the immunization of rabbits. Subjecting the antiserum to affinity purification on immobilized antigen as an absorbent yielded a purified immunoreactive antibody preparation, which was characterized by probing cytosolic and mitochondrial fractions of bovine and rat brain in western blotting. As neither crossreactivity with cytosolic malic enzyme nor immunoreactivity against other proteins could be observed, the antibody preparation was found suitable for immunocytochemistry. By using sections of perfusion-fixed rat brain, considerable resolution was achieved at the light-microscopic level. Distinct and specific staining of neurons was observed; in contrast, no staining of astrocytes and possibly unspecific staining within the nuclei of oligodendrocytes were obtained. From these data, it is concluded that mitochondrial malic enzyme is located in neurons; however, in astrocytes, the enzyme appears to be either lacking or present at a much lower level. A protective role against oxidative stress in neurons is proposed for mitochondrial malic enzyme.  相似文献   

12.
Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.  相似文献   

13.
Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.  相似文献   

14.
A cytochemical permeability test for the detection of injury to in situ mitochondria of cultured heart cells is presented. The test is based on the increased rate at which injured mitochondria stain for succinate dehydrogenase activity. Whereas an intact inner mitochondrial membrane limits the rate at which Nitro Blue tetrazolium and phenazine methosulphate reach succinate dehydrogenase, injured mitochondria allow these reactants to reach the enzyme more rapidly to form microscopically-observable formazan granules. The extent of staining at fixed durations of incubation with the reactants was assessed on a blind basis with pseudo dark-field microscopy, using a standardized rating scale. Differences in the staining of control and treated cells were analysed statistically by a semi-quantitative method. Treatment of the cultures with either vitamin A or chlorpromazine, resulted in more rapid mitochondrial staining. Brief pre-fixation of the cells with cold acetone also labilized the mitochondria as did a delay in the change of culture medium.  相似文献   

15.
The anticancer drug cisplatin is nephrotoxic and neurotoxic. Previous data support the hypothesis that cisplatin is bioactivated to a nephrotoxicant. The final step in the proposed bioactivation is the formation of a platinum-cysteine S-conjugate followed by a pyridoxal 5'-phosphate (PLP)-dependent cysteine S-conjugate beta-lyase reaction. This reaction would generate pyruvate, ammonium, and a highly reactive platinum (Pt)-thiol compound in vivo that would bind to proteins. In this work, the cellular location and identity of the PLP-dependent cysteine S-conjugate beta-lyase were investigated. Pt was shown to bind to proteins in kidneys of cisplatin-treated mice. The concentration of Pt-bound proteins was higher in the mitochondrial fraction than in the cytosolic fraction. Treatment of the mice with aminooxyacetic acid (AOAA, a PLP enzyme inhibitor), which had previously been shown to block the nephrotoxicity of cisplatin, decreased the binding of Pt to mitochondrial proteins but had no effect on the amount of Pt bound to proteins in the cytosolic fraction. These data indicate that a mitochondrial enzyme catalyzes the PLP-dependent cysteine S-conjugate beta-lyase reaction. PLP-dependent mitochondrial aspartate aminotransferase (mitAspAT) is a mitochondrial enzyme that catalyzes beta-elimination reactions with cysteine S-conjugates of halogenated alkenes. We reasoned that the enzyme might also catalyze a beta-lyase reaction with the cisplatin-cysteine S-conjugate. In this study, mitAspAT was stably overexpressed in LLC-PK(1) cells. Cisplatin was significantly more toxic in confluent monolayers of LLC-PK(1) cells that overexpressed mitAspAT than in control cells containing vector alone. AOAA completely blocked the cisplatin toxicity in confluent mitAspAT-transfected cells. The Pt-thiol compound could rapidly bind proteins and inactivate enzymes in close proximity of the PLP-dependent cysteine S-conjugate beta-lyase. Treatment with 50 or 100 microM cisplatin for 3 h, followed by removal of cisplatin from the medium for 24 h, resulted in a pronounced loss of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity in both mitAspAT-transfected cells and control cells. Exposure to 100 microM cisplatin resulted in a significantly greater loss of KGDHC activity in the cells overexpressing mitAspAT than in control cells. Aconitase activity was diminished in both cell types, but only at the higher level of exposure to cisplatin. AspAT activity was also significantly decreased by cisplatin treatment. By contrast, several other enzymes (both cytosolic and mitochondrial) involved in energy/amino acid metabolism were not significantly affected by cisplatin treatment in the LLC-PK(1) cells, whether or not mitAspAT was overexpressed. The susceptibility of KGDHC and aconitase to inactivation in kidney cells exposed to cisplatin metabolites may be due to the proximity of mitAspAT to KGDHC and aconitase in mitochondria. These findings support the hypothesis that a mitochondrial cysteine S-conjugate beta-lyase converts the cisplatin-cysteine S-conjugate to a toxicant, and the data are consistent with the hypothesis that mitAspAT plays a role in the bioactivation of cisplatin.  相似文献   

16.
Abstract— A method for the histochemical identification of choline acetyltransferase has been investigated further by studying the effects of certain inhibitors of the enzyme both on rat brain homogenates and on the localization of the enzyme in tissue sections.
It was confirmed that acetyl-CoA hydrolase activity both in homogenates and in tissue sections is inhibited by preincubation in 1 mM-DFP. The effects of the choline acetyltransferase inhibitors chloro- and bromoacetylcholine on the appearance of histochemical staining were related to their activity in homogenates and tissue slices. Bromoketone was found to inhibit choline acetyltransferase in homogenates and, less efficiently, in tissue sections but it also inhibited the hydrolysis of acetyl-CoA by some other unknown enzyme which is inactivated by 1 mM-DFP.
The results obtained with the choline acetyltransferase inhibitors provide support for the specificity of the histochemical method.  相似文献   

17.
To evaluate the ability of ependymal, microglial and oligodendroglial cells to degrade leucine, the presence of 3-methylcrotonyl-CoA carboxylase (MCC) was investigated in cultures of these cells. MCC is a biotin-containing heterodimeric enzyme that is specific for the irreversible part of the leucine catabolic pathway. It has been reported previously that in cell culture MCC is expressed in astrocytes and a subpopulation of neurones. In the present study ependymal, microglial and oligodendroglial cell cultures, derived from the brains of newborn rats, were examined for the expression of MCC by RT-PCR, western blotting and immunocytochemistry. The results of RT-PCR and western blotting showed the presence of mRNA as well as protein of both subunits of MCC in ependymal, microglial and oligodendroglial cell cultures. Immunocytochemical investigation of the cellular and subcellular distribution of MCC demonstrated a mitochondrial location of MCC in all neuroglial cell types investigated. The ubiquitous expression of MCC in glial cells demonstrates the ability of the cells to engage in the catabolism of leucine transported into the brain, mainly for the generation of energy.  相似文献   

18.
Tricarboxylic acid cycle enzymes following thiamine deficiency   总被引:3,自引:0,他引:3  
Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.  相似文献   

19.
Summary The use of unfixed and undecalcified cryostat sections of mouse knee joints is described for the study of enzyme histochemical reactions. Non-inflamed knee joints and knee joints of mice with antigen induced arthritis have been used. Joints were embedded in gelatin and subsequently cut at low speed with a motor-driven cryostat fitted with a tungsten carbide knife at an obtuse angle (10°). The sections were attached to transparent tape to keep the integrity of the tissue intact. The following histochemical reactions were carried out succesfully: the tetrazolium salt reaction for dehydrogenase and reductase activity, the post-azocoupling method for acid phosphatase and cathepsin B activity and the simultaneous azo-coupling method for esterase activity. In all cases the morphology and integrity of the sections were well kept and serial sections were obtained without any difficulty. Nonspecific staining of the tape did not occur. The localization of the final reaction product was meeting criteria for specific and precise histochemical methods with the exception of the metal salt method because of nonspecific staining of undecalcified bone. Cytophotometry of the final reaction product appeared to be reproducible and valid as demonstrated by reaction for glucose-6-phosphate dehydrogenase activity in synoviocytes from knee joints with induced arthritis. End point measurements as well as kinetic measurements of the formazan production were performed and linear relationships were found between the specific formazan formation and section thickness or incubation time, respectively. It is concluded that cryostat sections attached to transparent tape are an excellent tool for the study of the metabolism in tissues adjacent to bone matrix. Changes of enzyme activities in synoviocytes, chondrocytes and osteoclasts during induced arthritis are discussed.  相似文献   

20.
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号