首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

2.
The size, composition and distribution of particles in the watercolumn were surveyed in a shallow area (1 m depth) of a tropicallagoon (Cte d'Ivoire) during a sequence of wind-induced resuspension.Water samples were collected hourly near the surface duringone tidal cycle. Three characteristic periods were distinguished:a calm period with low wind speed (average 1.2 m s–1 awindy period with wind speed >3 m–1 s (range between4 and 6 m s–1) inducing sediment resuspension and a relaxationperiod during the decrease of wind velocity. From the analysisof several parameters (particle size and volume, bacteria. pico-and nanophytoplankton, ciliates and detritus), sediment resuspensioncaused a regular injection of particles from the bed. The finestparticles (1.5–6 µm: chlorophytes such as Chiorellaspp., picocyanobacteria such as Synechococcus) were the firstto be affected by wind-induced turbulence, whereas large particles(6–12 µm: diatoms. cyanobacteria such as Lyngbiaspp.) were dispersed into the water column at the highest windspeed. The fate of the different seston components differedaccording to their size. Therefore, wind-induced resuspensioncould greatly influence the food web organization through thequantity, quality and size of edible particles available ata given time.  相似文献   

3.
Ritchie, R. J. 1987. The permeability of ammonia, methylamineand ethylamine in the charophyte Chara corallina (C. australis).—J.exp. Bot. 38: 67–76 The permeabilities of the amines, ammonia (NH3), methylamine(CH3NH2) and ethylamine (CH3CH2NH2) in the giant-celled charophyteChara corallina (C. australis) R.Br. have been measured andcompared. The permeabilities were corrected for uptake fluxesof the amine cations. Based on net uptake rates, the permeabilityof ammonia was 6?4?0?93 µm s–1 (n = 38). The permeabilitiesof methylamine and ethylamine were measured in net and exchangeflux experiments. The permeabilities of methylamine were notsignificantly different in net and exchange experiments, norto that of ammonia (Pmethylamine = 6?0?0?49 µm s–1(n = 44)). In net flux experiments the apparent permeabilityof ethylamine was slightly greater than that of ammonia andmethylamine (Pethylamine, net = 8?4?1?2 µm s–1 (n= 40)) but the permeability of ethylamine based on exchangeflux data was significantly higher (Pethylamine, exchange =14?1?2 µm s–1 (n = 20)). Methylamine can be validlyused as an ammonium analogue in permeability studies in Chara. The plasmalemma of Chara has acid and alkaline bands; littlediffusion of uncharged amines would occur across the acid bands.The actual permeability of amines across the alkaline bandsis probably about twice the values quoted above on a whole cellbasis i.e. the permeability of ammonia across the permeablepart of the plasmalemma is probably about 12 µm s–1. Key words: Chara, permeability, ammonia, methylamine  相似文献   

4.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

5.
A study into the photophysiology, growth and migration of Ceratiumhirundinella in Chaffey Reservoir in subtropical northern NewSouth Wales, Australia, revealed that a proportion of cellsformed subsurface accumulations at depths that optimized lightintensity (212–552 µmol photons m–2 s–1)for photosynthesis and cell growth. At high incident irradiance,Ceratium migrated downwards from the near-surface waters, avoidinghigh-light-induced, slow-recovering non-photochemical quenchingof photosystem II. Overnight deepening of the surface mixedlayer by convective cooling produced homogeneous distributionsof Ceratium with a significant proportion of the populationbelow the depth where light saturation of photosynthesis occurred.Ceratium migrated towards the surface from suboptimal lightintensities, at a velocity of 1.6–2.7 x 10–4 m s–1.Subsurface accumulations occurred under a variety of turbulenceintensities; however, accumulation was significantly reducedwhen the turbulent velocity scale in the mixed layer was >5x 10–3 m s–1, beyond which turbulent diffusion dominatedadvection by swimming. The formation of subsurface accumulationswith increased computed water column integral photosynthesisby 35% compared to a uniform cell distribution.  相似文献   

6.
The roots of young plants of Avicennia marina (Forsk.) Vierh.grown under simulated tidal conditions were harvested so asto obtain the entire root system. The roots were subdividedand weighed and subsamples taken for manometric determinationof respiration rates at different temperatures. The supply capacityof the above-ground portion of the root system was determinedand the results compared in terms of supply and demand. Theoxygen consumption rate of the roots at 15°C was found tobe 1·69±0·07 µmol kg–1 s–1for cable roots and 3·27±0·12 µmolkg–1 s–1 for fine roots. The Q10 for respirationwas 2·55 for oxygen consumption in both fine and cableroots, and for carbon dioxide production was 2·66 forfine roots and 3·04 for cable roots. The respiratoryquotient varied with temperature but was less than unity. Concentrationdifferences of between 1·8 mol m–3 and 3·4mol m–3 between the inside of root and the air were sufficientto permit aeration of the root system by diffusion alone, andthe aerenchyma contained sufficient oxygen to maintain aerobicconditions while the roots were covered with water. The effectof tide and seasonal temperature change on gas exchange, togetherwith the possibility of some form of carbon dioxide fixationwithin the root, are examined and the implications of theseeffects on growth and development are discussed. Key words: Mangrove, root aeration, respiration, aerenchyma  相似文献   

7.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

8.
The water-relations parameters of Chara inflata cells were determineddirectly using the micro pressure probe technique. The turgorpressure of cells in artificial pond water (0 = 0.06 MPa) wasabout 0.65 MPa and the half-time (T1/2) for water exchange wasabout 6.5 s. The calculated values of the hydraulic conductivity(LP) were in the range 1–2 ? 10–6m s–1 (MPa)–1.The volumetric elastic modulus () was 32.8 MPa for turgor rangingfrom 0.77 to 0.82 MPa. Large changes in the water-relations parameters and the electricalproperties of the membrane occurred when the turgor was decreasedto low values. These changes included: (i) a decrease in theT1/2 for water exchange, (ii) an increase in LP and (iii) depolarizationof the membrane potential difference (Vm). The micro pressure probe, which enabled the turgor pressureof the cell to be altered, was used in combination with thevoltage-clamp technique to determine the relationship betweenK+ and Cl conductances of the plasmalemma and the cellturgor. The K+ conductance increased reversibly as the turgorwas reduced in the range 0 to 0.6 MPa and the Cl -conductanceincreased as the turgor was reduced in the range 0.1 to 0.5MPa. It is suggested that these pressure-dependent K+ and Clconductances may have a dual role in electrical events and thenon-electrical responses such as changes in the cell volume. Key words: Chara inflata, membrane conductances, ion channels, water-relations parameters  相似文献   

9.
Uniculm barley plants were grown in 8 h photoperiods at a quantumflux density of 655 µE m–2 s–1. Groups ofplants were transferred to four different light environmentsfor one 8 h photoperiod (106, 270, 665, and 975 µE m–2s–1) and harvested at intervals throughout the succeedingdark period for subsequent carbohydrate analysis of the youngestmature leaf. Sucrose was the predominant carbohydrate in the leaves (attaininga level of c. 100 mg dm–2 after 8 h at 975 µE m–2s–1) but starch was also of significance (20 mg dm–2after 8 h at 975 µE m–2 s–1). During the dark period, following a photoperiod at the threehighest light levels (270, 665, and 975 µE m–2 s–1),sucrose was exported first while the starch level remained fairlyconstant. When the-sucrose level fell to 15–20 mg dm–2starch degradation began. This critical sucrose level was reachedearlier in those plants subjected to lower quantum flux densitiesduring the preceding photoperiod. The delay in the remobilizationof starch suggests an important regulatory mechanism which maybe dependent upon the sucrose level. At 106 µE m–2s–1 the sucrose level rose to only 10 mg dm–2. Herethere was no discernible delay in the depletion of sucrose orstarch.  相似文献   

10.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

11.
The effects of two shoot densities (14 and 44 shoots/vine) andtwo crop levels (one and two clusters/shoot) on gas exchangeand water relations of field-grown Sauvignon blanc (Vitis viniferaL.) were studied in a factorial design over 3 years. The two-clustertreatments had 0.14 MPa higher stem water potential (stem),1.4 µmol m–2 s–1 higher assimilation rate(A), 0.04 mol m–2 s–1 higher stomatal conductance(gs) and 0.008 mol m–2 s–1 higher non-stomatal (gm)conductance. The two-cluster treatments had higher gs and transpirationrates than the one-cluster treatments, for similar stem. A quantitativeanalysis suggests that storage capacity cannot account for thesimultaneous increase in gs and stem in the two-cluster treatments.Similar gs-gm responses were found In the one- and two-clustertreatments, regard less of differences between the treatmentsin gs-stem response. Key words: Grapevine, stomatal conductance, assimilation rate, water relations  相似文献   

12.
Potassium transport has been studied in the marine euryhalinealga, Enteromorpha intestimlis cultured in seawater and in low-salinitymedium (Artificial Cape Banks Spring Water, ACBSW; 25·5mol m–3 Cl, 20·4 mol m–3 Na+, 0·5mol m–3 K+). K+ fluxes were measured using 42K+ and 86Rb+although 86Rb+ does not act as an efficient K+ analogue in thisplant. 42K+ experiments on seawater plants typically exhibiteda single protoplasmic exchange phase whereas 86Rb+ exhibitedtwo exchange phases. Compartmental analysis of 86Rb+ effluxexperiments on seawater-grown Enteromorpha plants were usedto deduce the intracellular partition of K+ between the cytoplasm(279±38 mMolal) and vacuole (405±68 mMolal). Theplasmalemma K+ flux in plants in seawater was greater in thelight than in the dark (563±108 nmol m–2 s–1versus 389±66·7 nmol m–2 s–1). Inlow-salinity plants, separate cytoplasmic and vacuolar exchangephases were apparent. Analysis of 42K+ efflux experiments onlow-salinity plants yielded a cytoplasmic K+ of 222±38mMolal and a vacuolar K+ of 82±11 mMolal. The plasmalemmaand tonoplast flux was 23±4·5 nmol m–2 s–1. The Nernst equation showed that, although K+ was close to electrochemicalequilibrium, active accumulation of K+ across the plasmalemmaoccurred in plants in seawater and ACBSW both in the light anddark. K+ was also actively transported inwards across the tonoplastin low-salinity plants. The electrochemical potential for K+across the plasmalemma ranged from 2·41±0·60kJ mol–1 in plants grown in seawater in the light to 5·79±0·87kJ mol–1 for plants in ACBSW in the light. Although K+is close to electrochemical equilibrium, the flux of K+ in plantsin both seawater and ACBSW media is high, hence the power consumptionof K+ transport is high. The permeability of K+ (PK+) was significantlyhigher in the light than in the dark in plants in seawater (about7·0 versus 2·5 nm s–1) but in plants inlow-salinity (ACBSW) medium the permeability was independentof light (about 12 nm s–1). The energy requirements ofactive K+ transport by ATP-dependent pumps is discussed. Key words: Enteromorpha, Potassium transport, Ionic relations, Saltwater, Low salinity, Thermodynamics  相似文献   

13.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

14.
The cyclopoid copepod Dioithona oculata forms swarms in water>30 on deep among prop roots of red mangroves (Rhizophoramangle) which fringe protected areas of two lagoonal cays, TwinCays, Belize. During 7 of 8 months surveyed by in situ observation,swarms were present but differed in size from small cylindricalswarms (5–10 cm diameter) to bands extending up to 1200m Swarms were never observed at night Swarms formed at dawnwhen light intensities reached an average value of 13.82 (logioquanta cmAbstract. s1) and dispersed at dusk atsimilar intensities Swarms observed in June formed earlier anddispersed later in the day than swarms observed in January,their swarming behavior followed seasonal changes in light intensityMean dioithonan density in swarms (10 ml1) was much higherthan the mean density (0 15 ml1) of non-swarming dioithonansaround mangrove prop roots. In open water 3–5 m away fromthe mangroves, mean dioithonan density was 7 9 x 105ml1 during the day, and 2 68 x103 ml1 at nightSwarms were composed predominantly of adults and copepodid stagesIV and V, although younger copepodid stages could be presentNauplii were never present. The ‘average copepodid stage’for all 95 swarms sampled was 5 3, where 6 0 represents a swarmwith only adults In open water 3–5 m away from the mangroves,the youngest copepodids (stage one) dominated the dioithonanpopulation during the day. At night when swarms dispersed toopen waters, average copepodid stage was higher (3 5) comparedwith the day value (1.2) in open waters. Although densitiesin swarms were higher in June than January, average copepodidstage in June was higher (5 6) than that in January (4.9). Ahigher percentage of adults were females during June than January.Therefore higher densities did not result from increases ofsmaller stages in swarms, but perhaps changes in behavior orpopulation structure.  相似文献   

15.
Diel vertical migrations of the marine dinoflagellates Gonyaulaxpolyedra Stein and Ceratium furca (Ehr.) Clap, et Lachm. werefollowed in a laboratory tube (2.02 m x 0.25 m) under a 12:12hlight:dark cycle. The effects of temperature stratification,two levels of surface irradiance and nitrogen depletion on patternsof vertical migrations were examined. At temperatures between22–26°C with small temperature gradients, both speciesmigrated at a rate of 0.7 –1.0 m h–1. Steeper thermoclines(ca. 0.8°C 0.1 m–1) with temperatures below ca. 20°Ccaused a marked decrease in swimming speed which resulted inaccumulations of cells in these thermocline regions. Under conditionsof nutrient sufficiency both algae migrated into the surfacelayers at irradiance values of over 1000 µE m–2s–1. Increasing nitrogen depletion caused the downwardmigration of both algae to commence progressively earlier inthe day and before the end of the light period. The earlierdownward migrations enabled a more complete descent throughthe thermocline. Nitrogen depleted cells of Gonyaulax continuedto undertake vertical migrations but avoided high irradiancesthus forming subsurface maxima at irradiance levels close to150 µE m–2 s–1. Ceratium cells which exhaustedboth inorganic nitrogen and phosphorus ceased to migrate accompaniedby a large change in cellular fluorescence.  相似文献   

16.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

17.
The bloom-forming marine dinoflagellate Gyrodinium cf. aureolumwas grown in batch cultures over a range of irradiances (35–380µmolm–2 s–1 and growth, photosynthesis and respirationrates determined. Saturation of growth occurred at irradiancesof 100µmol m–2 s–1 Below this light level,decreases in growth rates and cell size, and a relative increasein carbon specific respiration rates, were observed. On theother hand, photosynthesis-irradiance relationships determinedfrom dissolved oxygen incubations showed that on a cellularand carbon basis, cultures grown at low irradiances had higherrates of light-limited and light-saturated photosynthesis, mainlyas a result of large increases in cell chlorophyll content.This adaptation strategy enables low-light-grown organisms toexploit available high irradiance through a relatively highphotosynthetic capacity. In cells grown at higher light levels(>100µmol m–2 s–1), excess photosynthatemay be diverted to storage rather than used for growth.  相似文献   

18.
Increase in fluence rates of white light over the range of 5to 80 µmol m–2 s–1 brought about a correspondingincrease in amounts of anthocyanin production in shoots of Zeamays L. seedlings. Roots also exhibited a similar relationshipbetween increased fluence rate and increased anthocyanin productionover the range of 5 to 40 µmol m–2 s–1 whereasfluence rates above 40 µmol m–2 s–1 broughtabout decreases in anthocyanin production. Rates of productionand amounts of accumulation of anthocyanin in both shoots androots were found to vary with the age of the seedlings at thetime of exposure to light. Age, fluence rates, anthocyanin, seedlings, Zea mays  相似文献   

19.
Phosphate Uptake in the Cyanobacterium Synechococcus R-2 PCC 7942   总被引:4,自引:0,他引:4  
Phosphate uptake rates in Synechococcus R-2 in BG-11 media (anitrate-based medium, not phosphate limited) were measured usingcells grown semi-continuously and in continuous culture. Netuptake of phosphate is proportional to external concentration.Growing cells at pHo 10 have a net uptake rate of about 600pmol m–2 s–1 phosphate, but the isotopic flux for32P phosphate was about 4 nmol m–2 s–1. There appearsto be a constitutive over-capacity for phosphate uptake. TheKm and Vmax, of the saturable component were not significantlydifferent at pHo 7.5 and 10, hence the transport system probablyrecognizes both H2PO4and HPO2–4. The intracellularinorganic phosphate concentration is about 3 to 10 mol m–3,but there is an intracellular polyphosphate store of about 400mol m–3. Intracellular inorganic phosphate is 25 to 50kJ mol–1 from electrochemical equilibrium in both thelight and dark and at pHo 7.5 and 10. Phosphate uptake is veryslow in the dark ( 100 pmol m–2 s–1) and is light-activated(pHo 7.51.3 nmol m–2 s–1, pHo 10600 pmol m–2s–1). Uptake has an irreversible requirement for Mg2+in the medium. Uptake in the light is strongly Na+-dependent.Phosphate uptake was negatively electrogenic (net negative chargetaken up when transporting phosphate) at pHo 7.5, but positivelyelectrogenic at pHo 10. This seems to exclude a sodium motiveforce driven mechanism. An ATP-driven phosphate uptake mechanismneeds to have a stoichiometry of one phosphate taken up perATP (1 PO4 in/ATP) to be thermodynamically possible under allthe conditions tested in the present study. (Received June 16, 1997; Accepted September 4, 1997)  相似文献   

20.
Hydraulic and osmotic properties of spruce roots   总被引:9,自引:6,他引:3  
Hydraulic and osmotic properties of roots of 2-year-old Norwayspruce seedlings (Plcea abiea (L.) Karst) were investigatedusing different techniques (steady flow, pressure probe, andstop flow technique). Root pressures were measured using theroot pressure probe. Compared to roots of herbaceous plantsor deciduous trees, excised root systems of spruce did not developappreciable root pressure (-0.001 to 0.004 MPa or -10 to 40cm of water column). When hydrostatic pressure gradients wereused to drive water flows across the roots, hydraulic conductivities(Lpr) were determined in two types of experiments: (i) rootpressure relaxations (using the root pressure probe) and (ii)steady flow experiments (pneumatic pressures applied to theroot system or xylem or partial vacuum applied to the xylem).Root Lpr ranged between 0.2 and 810–8m s–1 MPa–1(on average) depending on the conditions. In steady flow experiments,Lpr depended on the pressure applied (or on the flow acrossthe roots) and equalled (0.190.12) to (1.21.7)10–8m s–1 MPa–1 at pressures between 0.2 and 0.4 MPaand (1.51.3)10–8 m s–1 MPa–1 at appliedpressures between 0.8 and 1.0 MPa. When pressures or vacuumwere applied to the xylem, Lpr values were similar. The hydraulicconductivity measured during pressure relaxations (transientwater flows) was similar to that obtained at high pressures(and water flows). Although there was a considerable scatterin the data, there was a tendency of the hydraulic conductivityof the roots to decrease with increasing size of the root system.When osmotic gradients were used to drive water flows, Lpr valuesobtained with the root pressure probe were much smaller thanthose measured in the presence of hydrostatic gradients. Onaverage, a root Lpr=0.01710–8 was found for osmotic andLpr=6.410–8 m s–1 MPa–1 in correspondinghydrostatic experiments, i.e. the two values differed by a factorwhich was as large as 380. The same hydraulic conductivity asthat obtained in osmotic experiments using the pressure probewas obtained by the 'stop flow techniquel. In this technique,the suction created by an osmoticum applied to the root wasbalanced by a vacuum applied to the xylem. Lpr values of rootsystems did not change significantly when measured for up to5 d. In osmotic experiments with different solutes (Na2S04,K2S04, Ca(NO3)2, mannitol), no passive uptake of solutes couldbe detected, i.e. the solute permeability was very low whichwas different from earlier findings on roots of herbs. Reflectioncoefficients of spruce roots (O were low for solutes for whichplant cell membranes exhibit values of virtually unity (  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号