首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholic acid uptake was studied in isolated rat hepatocytes using a centrifugal filtration technique to allow rapid sampling. Hepatocytes were found to adsorb as well as to transport cholic acid. The adsorption was characterized by a capacity of 24 nmol X mg cell protein-1 and an association constant of 0.59 X 103 M-1. Cholic acid uptake was linear with respect to concentration at or below 10 degree C, suggesting a unsaturable uptake process which was considered to represent simple diffusion and is quantitated by a diffusion coefficient of 1.76 pmol cholic acid X min-1 X mg protein-1 X muM-1. Above 10 degrees C the uptake curve was biphasic. After subtracting the unsaturable component from uptake rates at higher temperatures, a curve showing saturable kinetics resulted. The apparent Km and V values at 37 degrees C were calculated to be 31muM and 0.8 nmol X min-1 X mg protein-1 respectively. This saturable uptake process was temperature-dependent with an activation energy of 13 kcal X mol-1 (5.44 X 104 J X mol-1) and was inhibited by oligomycin and KCN. Countertransport was demonstrated with cholic, taurocholic and chenodeoxycholic acids. The results suggest that cholic acid is transported by an energy-dependent carrier-mediated process in addition to simple diffusion by hepatocytes, and that the postulated carrier has affinity for other bile acids.  相似文献   

2.
The transport of 2-oxoisocaproate into isolated hepatocytes and liver mitochondria of rat was studied using [U-14C]2-oxoisocaproate and the silicone oil filtration procedure. 2-Oxoisocaproate uptake by hepatocytes was composed of: rapid adsorption, unmediated diffusion and carrier-mediated transport. The carrier-mediated transport was strongly inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid and p-chloromercuribenzoate, was less sensitive to alpha-cyano-4-hydroxycinnamate and insensitive to p-chloromercuriphenylsulphonate. Other 2-oxo acids: pyruvate, 2-oxoisovalerate and 2-oxo-3-methylvalerate, were also inhibitory. The kinetic parameters of the carrier-mediated transport were Km 30.6 mM and Vmax 23.4 nmol/min per mg wet wt, at 37 degrees C. It is concluded that at its low, physiological, concentration, 2-oxoisocaproate penetrates the hepatocyte membrane mainly by unmediated diffusion. The uptake of 2-oxoisocaproate by isolated liver mitochondria was partly inhibited by alpha-cyano-4-hydroxycinnamate, the inhibitor of mitochondrial monocarboxylate carrier. The remaining uptake was linearly dependent on 2-oxoisocaproate concentration and represented unmediated diffusion. The carrier-mediated transport exhibited the following kinetic parameters: Km 0.47 mM, Vmax 1.0 nmol/min per mg protein at 6 degrees C; and Km 0.075 mM and Vmax about 8 nmol/min per mg protein at 37 degrees C.  相似文献   

3.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

4.
The effect of temperature cycling on the relative productions of aflatoxins B1 and G1 by Aspergillus parasiticus NRRL 2999 was studied. The cycling of temperature between 33 and 15 degrees C favored aflatoxin B1 accumulation, whereas cycling between 35 and 15 degrees C favored aflatoxin G1 production. Cultures subjected to temperature cycling between 33 and 25 degrees C at various time intervals changed the relative productions of aflatoxins B1 and G1 drastically. Results obtained with temperature cycling and yeast extract-sucrose medium with ethoxyquin to decrease aflatoxin G1 production suggest that the enzyme system responsible for the conversion of aflatoxin B1 to G1 might be more efficient at 25 degrees C than at 33 degrees C. The possible explanation of the effect of both constant and cycling temperatures on the relative accumulations of aflatoxins B1 and G2 might be through the control of the above enzyme system. The study also showed that greater than 57% of aflatoxin B1, greater than 47% of aflatoxin G1, and greater than 50% of total aflatoxins (B1 plus G1) were in the mycelium by day 10 under both constant and cyclic temperature conditions.  相似文献   

5.
Two alternative uptake mechanisms for phallotoxins by liver cells are debated: carrier-mediated uptake and receptor-mediated endocytosis. We have compared the properties of hepatocellular uptake of the phallotoxins, phalloidin and demethylphalloin, with the uptake of cholate as a substrate for carrier-mediated uptake and compared with iodinated bovine lactoperoxidase or iodinated horseradish peroxidase, as the latter are known to be taken up by vesicular endocytosis. Uptake of phallotoxins and [14C]cholate uptake into isolated hepatocytes is independent of extracellular calcium but inhibited by A23187 or by monensin. Uptake of bovine lactoperoxidase strictly depends on external Ca2+, was insensitive to A23197 and was not inhibited by monensin. No mutual uptake inhibition between phalloidin or cholate and peroxidases was seen, indicating independent permeation pathways in hepatocytes. However, high concentrations of cytochalasin B inhibited the uptake of either phalloidin, cholate or bovine lactoperoxidase. Horseradish peroxidase uptake, which was taken as an indicator for fluid pinocytosis, was low in isolated hepatocytes and could not account for the amount of phalloidin or cholate taken up. In cultured rat hepatocytes, uptake of phallotoxins decreased within 1 day to 10% of the uptake seen in freshly isolated hepatocytes. The results indicate different mechanisms for hepatocellular phallotoxin/bile-acid uptake and peroxidase internalization. As monolayer cultures of hepatocytes rapidly lost the carrier-mediated uptake of phallotoxins and bile acids, freshly isolated hepatocytes might be a more suitable experimental model than cultured cells for kinetic studies on this transport system.  相似文献   

6.
Inhibition by sporidesmin of hepatocyte bile acid transport.   总被引:1,自引:0,他引:1       下载免费PDF全文
Exposure of isolated rat hepatocytes (approx. 2 x 10(7)--5 x 10(7) cells/10ml of incubation mixture) to 0.5 mg of the mycotoxin sporidesmin for 30--60 min at 37 degrees C produced loss of plasma-membrane microvilli with some disruption of organelle distribution in the sub-surface region. There was accompanying inhibition of [14C]cholate and [14C]taurocholate transport, but bile acid conjugation was not altered. Inhibition of cholate uptake was maximal after exposure of hepatocytes to sporidesmin for 1 min, and was not reversed by washing cells free of extracellular sporidesmin. N-Ethylmaleimide (0.1 mM) or dithiothreitol (1 mM) partially protected hepatocytes from sporidesmin inhibition of bile acid uptake. Significant protection was not given by other thiols or by zinc sulphate, cholesterol, ascorbate or alpha-tocopherol. The results are discussed in terms of sporidesmin action on cell membranes and the toxin's effect on bile secretion.  相似文献   

7.
The effect of individual oxysterols--products of auto-oxidation of cholesterol on bile acid synthesis by cultivated rabbit hepatocytes was studied. Relative rates of bile acid synthesis were measured as the conversion of 4-14C cholesterol-HDL2 into total 4-14C labeled bile acids. 7 beta-hydroxycholesterol and 3,5-cholestane-7-dione strongly inhibited bile acid synthesis at concentrations 1-10 micrograms/ml. These data support the hypothesis that oxidized cholesterol derivatives accelerate the development of hypercholesterolemia in rabbits fed on cholesterol containing diet.  相似文献   

8.
The uptake mechanism for the bile salt, taurocholate, by the liver cell is coupled to sodium but the stoichiometry is controversial. A one-to-one coupling ratio would result in electroneutral transport, whereas cotransport of more than one sodium ion with each taurocholate molecule cause an electrogenic response. To better define the uptake of this bile salt, we measured the effect of taurocholate on the membrane potential and resistance of isolated rat hepatocytes using conventional microelectrode electrophysiology. The addition of 20 microM taurocholate caused transient but significant depolarization accompanied by a significant decrease in membrane resistance. The electrical effect induced by taurocholate mimicked that induced by L-alanine (10 mM), the uptake of which is known to occur through an electrogenic, sodium-coupled mechanism. The sodium dependence of taurocholate-induced depolarization was further confirmed by: (1) replacing Na+ with choline +, and (2) preincubating cells with ouabain (2 mM) or with the Na+-ionophore, gramicidin (25 micrograms/ml); both suppressed the electrogenic response. Further, cholic acid, which inhibits sodium-coupled taurocholate uptake in hepatocytes, inhibited taurocholate evoked depolarization. These results support the hypothesis that sodium-coupled taurocholate uptake by isolated hepatocytes occurs through an electrogenic process which transports more than one Na+ with each taurocholate molecule.  相似文献   

9.
The purpose of the present study was to characterize the transport of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) into hepatocytes at physiological and pharmacological concentrations. Hepatocytes were isolated from female Sprague-Dawley rats by collagenase perfusion. Uptake of [3H]DHEA and [3H]DHEAS at increasing concentrations (3.5 nM-100 μM) was measured by the rapid filtration technique at 30 s intervals up to 120 s. The uptake of DHEAS by hepatocytes was saturable (Km = 17.0 μM; Vmax = 3.7 nmol/min/mg cell protein). In contrast, a specific saturable transport system for DHEA could not be detected in rat hepatocytes. It is suggested that DHEA enters the cell by diffusion. The uptake of DHEAS could be inhibited by antimycin A, carbonylcyanide-m-chlorophenylhydrazone, and dinitrophenol (inhibitors of the mitochondrial respiratory chain), by dinitrofluorobenzene and p-hydroxymercuribenzoate (NH2- and SH-blockers, respectively), and by monensin (Na+-specific ionophore). No inhibition was seen in the presence of ouabain (inhibitor of Na+-K+-ATPase) and phalloidin (inhibitor of cholate transport and actin-blocker). Interestingly, DHEAS uptake was inhibited by bile acids (cholate, taurocholate and glycocholate). Conversely, [3H]cholate uptake was strongly inhibited by DHEAS, which indicates a competition for the same carrier. Replacement of sodium ion with choline markedly decreased uptake velocity at pharmacological DHEAS concentrations. The results suggest that DHEAS uptake is a saturable, energy-dependent, carrier-mediated, partially Na+-dependent process, and that DHEAS may be taken up via the multispecific bile acid transport system.  相似文献   

10.
The uptake of the cyclopeptide c(Phe-Thr-Lys-Trp-Phe-D-Pro) (008), an analog of somatostatin with retro sequence, was studied in isolated hepatocytes. 008 is taken up by hepatocytes in a concentration-, time-, energy- and temperature- dependent manner. Since 008 is hydrophobic, it binds rapidly to liver cells. This is evident by the positive intercept at the gamma-axis in the uptake curves. At higher concentrations, a minor part of the transport occurs by diffusion at a rate of 8.307.10(-6) cm/s. This part of diffusion is measured at 4 degrees C and can be subtracted from the uptake at 37 degrees C resulting in the carrier mediated part of uptake which is saturable. Kinetic parameters for the saturable part of uptake are Km 1.5 microM and Vmax 40.0 pmol/mg per min. The transport is decreased in the absence of oxygen and in the presence of metabolic inhibitors. Uptake is accelerated at temperatures above 20 degrees C. The activation energy was determined to be 30.77 kJ/mol. The membrane potential and not a sodium gradient is the main driving force for 008 transport. Cholate (a typical substrate of the multispecific bile acid transporter) and taurocholate are mutual competitive inhibitors of 008 uptake. Phalloidin, antamanide and iodipamide, typical foreign substrates of the transporter, interfere with the uptake of 008. AS 30D ascites hepatoma cells, known to be unable to transport bile acids, phalloidin and iodipamide, are also unfit to transport 008. Interestingly, sulfobromophthalein (BSP) but not rifampicin, both foreign substrates of the bilirubin carrier, inhibits the transport of 008 in a competitive manner.  相似文献   

11.
Taurocholate uptake by adult rat hepatocytes in primary culture   总被引:2,自引:0,他引:2  
Adult rat hepatocytes were cultured on Petri dishes for 25--30 h prior to measuring their ability to transport taurocholate. A rapid uptake of the bile acid (25 muM) was observed: about 20% was accumulated in the cells within 15 min. The taurocholate transport was saturable with an apparent Km of 28 +/- 10 muM and a maximal velocity V of 0.07 +/- 0.02 nmol/(micrograms DNA x min). Uptake was shown to be energy dependent as it was inhibited about 65% by antimycin A (20 micrograms/ml). The monohydroxylated bile acid taurolithocholate and the dihydroxylated taurochenodeoxycholate inhibited taurocholate transport to about 30 and 40% resp. of the control. The transport process was strongly dependent on sodium ions. It is concluded that the characteristics of taurocholate uptake into adult rat hepatocytes are very similar either in freshly prepared cells or in hepatocytes which are cultured on Petri dishes for 25--30 h.  相似文献   

12.
The carrier-mediated transport of cholic acid has been examined in primary monolayer cultures of rat hepatocytes. The capacity of the cells to concentrate cholate was reduced by 96% between 24 and 72 h in culture. Inclusion of dexamethasone and tocopherol in the medium stabilized this process (resulting in a 2-fold elevation in uptake after 48 h in culture and 3.4-fold elevation after 72 h). Dexamethasone alone had no effect and tocopherol caused a partial stabilization. The two additives completely stabilized bromosulfophthalein uptake for 72 h, which showed a 50% reduction in unsupplemented medium over the same time period. The uptake of cholic acid and bromosulfophthalein was reduced by 98 and 96%, respectively, in a stable, transformed hepatic cell line.  相似文献   

13.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

14.
Hybrids were created by fusion of primary rat hepatocytes with well-differentiated Reuber H35 rat hepatoma cells. Seventeen hybrids were screened for bile acid synthesis using [26-14C]cholesterol. As [26-14C]cholesterol was converted to bile acid, 14CO2 was released. Using this assay, four hybrids (8B, 12C, 13C, and 13D) were identified which synthesized bile acid. These four hybrids also incorporated [14C]taurine into bile acid. Bile acids were identified by capillary gas chromatography/mass spectrometry, and their rates of synthesis were quantitated by isotope dilution. Reuber H35 cells synthesized little or no bile acid. However, hybrids 8B, 12C, 13C, and 13D synthesized chenodeoxycholic acid, alpha-muricholic acid, and cholic acid and secreted them into the media. The rates of synthesis of individual bile acids varied among these hybrids. For example, the relative percentage of cholic acid ranged from 11.1% (hybrid 8B) to 50.4% (hybrid 13C). The bile acids synthesized and secreted by the most active hybrid, 12C, were greater than 93% conjugated. In summary, hybrids were created that retain the capacity to synthesize, conjugate, and secrete three major rat bile acid species. Such hybrids are unique model systems that will allow the study of the biochemical and genetic regulation of bile acid synthesis.  相似文献   

15.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

16.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

17.
The influence of bile salts on the binding and uptake of Salmonella abortus equi lipopolysaccharide by cultured Kupffer cells was studied. In control preparations, the percentage of cell-associated lipopolysaccharide increased with time and reached a plateau after about 2 h incubation at 37 degrees C. About 1.2 micrograms lipopolysaccharide was associated with 10(6) Kupffer cells at this time interval. In the presence of 0.3, 0.6 and 1 mumol bile salts/ml the cell-associated lipopolysaccharide was respectively, about 5%, 13% and 29% lower than in control cultures. In the presence of 1 mumol bile salts/ml, the association of lipopolysaccharide to cells at 0 degrees C was about 25% lower than in controls. Preincubation of Kupffer cells with 1 mumol bile salts/ml, with or without lipopolysaccharide, did not affect cell-associated lipopolysaccharide after removal of the bile salts. The rate of secretion of radioactivity by Kupffer cells was not influenced by the presence of bile salts during the uptake or the secretion periods. Bile acids proved to inactivate lipopolysaccharide. From these observations it was concluded that low concentrations of bile salts influence the binding and uptake of lipopolysaccharide by Kupffer cells. It was, therefore, considered likely that, in patients with obstructive jaundice, the high serum bile acid level accounts for spill-over of portal lipopolysaccharide into the systemic blood.  相似文献   

18.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37 degrees C) had a 2-fold higher rate of 2-deoxy-D-glucose uptake than the same cells cultured at the non-permissive temperature (41 degrees C). However, both the non-transformed and transformed cells had comparable rates of alpha-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41 degrees C or 37 degrees C, displayed carrier-mediated, intravesicular uptake of D-glucose and alpha-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37 degrees C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41 degrees C. The two types of membrane vesicle had similar uptake rates of alpha-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific D-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37 degrees C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37 degrees C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virally-transformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

19.
The conversion of cholesterol to bile acids is a key pathway for elimination of cholesterol from the body, thereby reducing the risk of arteriosclerosis. Moderate consumption of ethanol has been shown to have preventive effects on cardiovascular disease and decrease the risk of gallstone formation. In the present study primary human hepatocytes were used to investigate if ethanol affected bile acid synthesis. Hepatocytes were prepared from donor liver (n = 11) and treated with ethanol, 7.7 or 50 mM, for 24 h. mRNA levels for enzymes in bile acid synthesis pathways were studied and bile acid synthesis was analyzed. Treatment with 7.7 mM ethanol increased cholic acid synthesis by 20% and treatment with 50 mM ethanol up-regulated cholic acid formation by 60%. The synthesis of cholic acid increased more than that of chenodeoxycholic acid, indicating that the classical pathway for bile acid synthesis was up-regulated. Increased bile acid levels in the cells treated with ethanol were seen after approximately 20 h. mRNA expression of CYP7A1, CYP27A1, and CYP8B1 in the hepatocytes was not affected by alcohol exposure.  相似文献   

20.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号