首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TALE (three amino acid loop extension) homeodomain proteins include the PBC and the MEINOX sub-families. MEINOX proteins form heterodimer complexes with PBC proteins. Heterodimerization is crucial to DNA binding and for nuclear localization. PBC-MEINOX heterodimers bind DNA also in combination with HOX proteins, thereby modulating their DNA-binding specificity. TALE proteins therefore play crucial roles in multiple developmental and differentiation pathways in vivo. We report the identification and characterization of a novel human gene homologous to PREP1, called PREP2. Sequence comparisons indicate that PREP1 and PREP2 define a novel sub-family of MEINOX proteins, distinct from the MEIS sub-family. PREP2 is expressed in a variety of human adult tissues and displays a more restricted expression pattern than PREP1. PREP2 is capable of heterodimerizing with PBC proteins. Heterodimerization with PBX1 appears to be essential for nuclear localization of both PREP2 and PBX1. A comparison between the functional properties of PREP1 and PREP2 reveals that PREP2-PBX display a faster DNA-dissociation rate than PREP1-PBX heterodimers, suggesting different roles in controlling gene expression. Like PREP1, PREP2-PBX heterodimers are capable of forming ternary complexes with HOXB1. The analysis of some PREP2 in vitro properties suggests a functional diversification among PREP and between PREP and MEIS MEINOX proteins.  相似文献   

2.
3.
4.
5.
6.
7.
Complex genetic and biochemical interactions between HOX proteins and members of the TALE (i.e., PBX and MEIS) family have been identified in embryonic development, and some of these interactions also appear to be important for leukemic transformation. We have previously shown that HOXA9 collaborates with MEIS1 in the induction of acute myeloid leukemia (AML). In this report, we demonstrate that HOXB3, which is highly divergent from HOXA9, also genetically interacts with MEIS1, but not with PBX1, in generating AML. In addition, we show that the HOXA9 and HOXB3 genes play key roles in establishing all the main characteristics of the leukemias, while MEIS1 functions only to accelerate the onset of the leukemic transformation. Contrasting the reported functional similarities between PREP1 and MEIS1, such as PBX nuclear retention, we also show that PREP1 overexpression is incapable of accelerating the HOXA9-induced AML, suggesting that MEIS1 function in transformation must entail more than PBX nuclear localization. Collectively, these data demonstrate that MEIS1 is a common leukemic collaborator with two structurally and functionally divergent HOX genes and that, in this collaboration, the HOX gene defines the identity of the leukemia.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The predominant form of type V collagen is the [α1(V)]?α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号