首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Microcrystalline cellulose (10 g/L Avicel) was hydrolysed by two major cellulases, cellobiohydrolase I (CBH I) and endoglucanase II (EG II), of Trichoderma reesei. Two types of experiments were performed, and in both cases the enzymes were added alone and together, in equimolar mixtures. In time course studies the reaction time was varied between 3 min and 48 h at constant temperature (40 degrees C) and enzyme loading (0.16 micromol/g Avicel). In isotherm studies the enzyme loading was varied in the range of 0.08-2.56 micromol/g at 4 degrees C and 90 min. Adsorption of the enzymes and production of soluble sugars were followed by FPLC and HPLC, respectively. Adsorption started quickly (50% of maximum achieved after 3 min) but was not completed before 60-90 min. For CBH I a linear relationship was observed between the production of soluble sugars and adsorption, showing that the average activity of the bound CBH I molecules does not change with increasing saturation. For EG II the corresponding curve levelled off which is explained by initial hydrolysis of loose ends on Avicel. The enzymes competed for binding sites, binding of EG II was considerably affected by CBH I, especially at high concentration. CBH I produced more soluble sugars than EG II, except at conversions below 1%. At 40 degrees C when the enzymes were added together they produced 27-45% more soluble sugars than the sum of what they produced alone, i.e. synergistic action was observed (the final conversion after 48 h of hydrolysis was 3, 6, and 13% for EG II, CBH I, and their mixture, respectively). At 4 degrees C, on the other hand, when the conversion was below 2.5%, almost no synergism could be observed. Molar proportions of the produced sugars were rather stable for CBH I (11-15%, 82-89%, and <6% for glucose, cellobiose, and cellotriose, respectively), while it varied considerably with both time and enzyme concentration for EG II. The observed stable but high glucose to cellobiose ratio for CBH I indicates that the processivity for this enzyme is not perfect. EG II produced significant amounts of glucose, cellobiose, and cellotriose, which are not the expected products of a typical endoglucanase activity on a solid substrate. We explain this by hypothesizing that EG II may show processivity due to its extended substrate binding site and the presence of its cellulose binding domain.  相似文献   

2.
An alpha(1)-acid glycoprotein, immobilized on silica (Chiral-AGP) is one of the most widely used chiral stationary phases for the enantiomeric separation of a wide variety of chiral drugs with several applications in the biological and clinical field. The aim of this work was to study the sorption properties of the AGP-based stationary phase, which may have crucial importance for enantioselectivity. New binding data to the mechanism of the chromatographic separation are presented. The sorption of both organic solvents, i.e., acetonitrile and dioxane, shows remarkable pH dependency. A fluorescence quenching study was carried out to elucidate structural changes of AGP in the presence of acetonitrile using 2,2,2-trichloroethanol as fluorescence quencher.  相似文献   

3.
Intact and fragmented cellobiohydrolase II (CBH II) were immobilized to silica and used as chiral stationary phases (CSPs) for liquid chromatographic separations of enantiomers. Both acidic and basic chiral compounds could be resolved into their enantiomers on these phases. The enantioselectivities obtained on intact CBH II and its core were almost equivalent. Comparisons were also made with CBH I silica. It was found that the new materials show quite different chiral and chromatographic properties. The enzymatic activity of the CBH II in free solution was influenced by alprenolol and mexiletine, both separated on the corresponding CSP. It indicates that the sites for catalysis and for chiral recognition overlap. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Cellobiohydrolase CBH I (Cel7A) from the filamentous fungus Trichoderma reesei (TrCBHI), which is a member of glycoside hydrolase family (GHF) 7, was expressed in Aspergillus oryzae. We found that the recombinant enzyme showed significant chitosanase activity, as well as cellulase activity, and acted in an endo-type manner on soluble polymeric substrate. Furthermore, another GHF7 CBH I from Aspergillus aculeatus (AaCBHI) expressed in A. oryzae also had chitosanase activity, while endoglucanase EG I (Cel7B) from T. reesei had no activity towards chitosan. To our knowledge, this is the first report of GHF7 enzymes possessing chitosanase activity.  相似文献   

5.
Most of the β-blocking drugs for treating diseases of the cardiovascular system are chiral aryloxy–propanolamine derivatives. Tipically, the S(−) enantiomers are more active than the R(+) enantiomers. Only some of them (for example timolol) are used as single enantiomers, the others are employed as racemates. For the determination of the enantiomeric purity of timolol European Pharmacopoeia prescribes an HPLC method using chiral stationary phase. However, the use of chiral capillary zone electrophoresis for the determination of the enantiomeric purity is of pharmaceutical interest. This study describes the application of various cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin, randomly methylated β-cyclodextrin, sulphated β-cyclodextrin and sulphated -cyclodextrin for the stereoselective analyses of β-blockers. Baseline separation was obtained for bopindolol, carvedilol, mepindolol, pindolol and alprenolol, while only partial separation was observed for sotalol, propranolol, oxprenolol, atenolol, bisoprolol, bupranolol, and metoprolol. The uneven molecular recognition of the enantiomers of the β-blockers, especially of the optical isomers of labetalol and nadolol, showed the importance of the chemical nature of the separators and the analytes.  相似文献   

6.
Abstract Three clostridial cellulases viz. a hydrophilic cellobiohydrolase (CBH3), a hydrophobic endoglucanase (EG1), and an aggregate-forming hydrophilic endoglucanase (EG5), all purified from recombinant strains of Escherichia coli , were used in different combinations to reconstitute the synergistic effect during cellulose hydrolysis. EG1 and EG5 were weakly active on crystalline cellulose, if added separately or together in the reaction mixture. However, when CBH3 was added to the reaction mixture, its hydrolytic activity was increased to 1.8-fold in the presence of EG1 and EG5. A further increase in the activity from 1.8 to 2.2-fold was observed when calcium and dithiothreitol were added to the reaction mixture containing all three enzymes and filter paper as substrate. The synergistic effect remained unaffected even when EG1 was replaced by its 33-amino acid C-terminal deleted variant BL35. BL35 was less active compared to EG1, but was equally hydrophobic as EG1. These results suggest that the hydrophobic interaction between cellulolytic components and/or with the crystalline substrate is important for positive synergistic effect.  相似文献   

7.
Enantiomers of some new quinazoline derivatives bearing α-aminophosphonate moiety were separated under normal-phase conditions on two immobilized polysaccharide-based chiral stationary phases (Chiralpak IA and Chiralpak IC). The role of two chiral stationary phases (CSPs), polar modifier and column temperature on retention time and separation factor was studied. Apparent thermodynamic parameters were deduced from Van’t Hoff plots and plausible mechanism of chiral recognition has been discussed. The semi-preparative separation of some compounds was executed successfully in n-hexane/isopropyl alcohol (IPA) on the Chiralpak IA column. The preliminary bioassay showed that both the enantiomers of the investigated series of compounds possessed similar anti-tobacco mosaic virus (TMV) activities.  相似文献   

8.
To chiroptically characterize the enantiomers of omeprazole and some structurally related benzimidazoles with circular dichroism (CD), preparative chiral liquid chromatography was utilized for the isolation of the pure enantiomers. A limited analytical column screen was performed identifying Kromasil-CHI-TBB and the amylose-based phases Chiralpak AD and AS as possible chiral stationary phases (CSPs) for the preparative scale separation of the enantiomers of the different benzimidazoles. Optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents as well as of temperature. Because of the lability of the compound in slightly acidic media, supercritical fluid chromatography (SFC) could not be applied for a preparative scale separation of the enantiomers. The separation of omeprazole was optimized to give high throughput (2.6 kg racemate/kg CSP/day) and high enantiomeric excess of the obtained isomers. The absolute configurations of the pure enantiomers of rabeprazole, lansoprazole, and pantoprazole were determined from the strong correlation to the CD spectrum of (+)-(R)-omeprazole. For all the compounds, the (+)-enantiomers displayed similar chiroptical features as (+)-(R)-omeprazole and were thus assigned the (R)- configuration. Elution order of the optical isomers was monitored by injecting racemic solutions spiked with one of the isomers and also by an on-line laser polarimeter. Both the type of CSP and also the mobile phase constituents had a strong effect on elution order of the enantiomers.  相似文献   

9.
Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters.  相似文献   

10.
Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH 4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), beta-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-beta-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against beta-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified beta-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.  相似文献   

11.
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.  相似文献   

12.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   

13.
Midodrine hydrochloride is a peripheral alpha(1)-adrenoreceptor agonist that induces venous and arterial vasoconstriction. Midodrine, after oral or intravenous administration, undergoes enzymatic hydrolysis and releases deglymidodrine, a pharmacologically active metabolite. Midodrine and deglymidodrine have a chiral carbon in the 2-position. To investigate the bioactivity of racemates and enantiomers of the drug and metabolite, three chromatographic chiral stationary phases, Chiralcel OD-H, Chiralcel OD-R, and alpha(1)-AGP, were evaluated for enantiomeric resolution. Good enantioseparation of midodrine racemate was obtained using the Chiralcel OD-H column. This stationary phase was then used to collect separately the midodrine enantiomers. By alkaline hydrolysis of rac-midodrine and each separated enantiomer, rac-deglymidodrine and its enantiomers were prepared. The control of the enantiomeric purity was carried out by alpha(1)-AGP stationary phase, while the hydrolysis of rac-midodrine and its enantiomers was controlled by capillary electrophoresis using trimethyl-beta-cyclodextrin as chiral selector. The pharmacological activity of the two racemates and the two enantiomeric pairs was tested in vitro on a strip of rabbit descending thoracic aorta. The tests continued that the activity of the drug and metabolite is due only to the (-)-enantiomer because neither of the (+)-enantiomers is active.  相似文献   

14.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

15.
《Chirality》2017,29(6):239-246
The enantioselective potential of two polysaccharide‐based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris‐(3,5‐dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose‐based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose‐based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose‐based chiral stationary phase were achieved particularly with propane‐2‐ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO2, respectively. Methanol and basic additive isopropylamine were preferred on amylose‐based chiral stationary phase. The complementary enantioselectivity of the cellulose‐ and amylose‐based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest.  相似文献   

16.
Three chiral calcium antagonist drugs, bepridil and two dihydropyridine derivatives (nicardipine and REC 15/2375), have been successfully separated within short retention times using either the α1-acid glycoprotein chiral stationary phase (Chiral AGP) or the ovomucoid column (Ultron ES-OVM). Aqueous buffer at defined pH is modified by the addition of an organic component (propan-2-ol, acetonitrile, ethanol) in order to modulate the retention properties of each system. The influence of pH and percentage of organic modifier on retention, selectivity, resolution, and column performance are discussed for bepridil analyzed on Chiral AGP and for the two dihydropyridines (nicardipine and REC 15/2375) analyzed on Ultron ES-OVM stationary phases. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan‐based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R‐napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6‐RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7‐DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U‐shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π–π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode. Chirality 27:64–70, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Analytical HPLC methods using carbamate chiral stationary phases of polysaccharide derivatives were developed for the enantiomeric resolution of five racemic mixtures of xanthonolignoids: rac-trans-kielcorin C, rac-cis-kielcorin C, rac-trans-kielcorin D, rac-trans-isokielcorin D, and rac-trans-kielcorin E. The separations were evaluated with the stationary phases cellulose tris-3,5-dimethylphenylcarbamate, amylose tris-3,5-dimethylphenylcarbamate, amylose tris-(S)-1-phenylethylcarbamate, and amylose tris-3,5-dimethoxyphenylcarbamate under normal, reversed-phase, and polar organic elution conditions. Chiral recognition of those chiral stationary phases, the influence of mobile phases on the enantiomers separation, and the effects of structural features of the solutes on the chiral discrimination observed are discussed. The best performance was achieved on an amylose tris-3,5-dimethylphenylcarbamate phase. Polar organic conditions gave shorter retention factors and better resolutions and were a valuable alternative to the alcohol-hexane or reversed-phase conditions.  相似文献   

19.
The ability of dehydrated baker's yeast (Sigma, type II) to carry out oxidation reactions was investigated using a mixture of (S)- and (R)-enantiomers of 2-heptanol operated in a biphasic system with hexadecane as the organic layer. The commercial material could be used without preliminary growth provided the external trehalose was removed by centrifugation. It afforded a non enantiospecific biocatalyst with high activity, and 2-heptanone could be obtained in up to 10 g L-1 after 30 h reaction with a molar yield close to 100% with this material. Yeast cells harvested in the stationary phase of aerobic growth exhibited only a (S)-oxidation activity, which gave a process for the resolution of (R)-enantiomers of secondary alcohols. These results led to the assumption that at least two enzymes were acting in this process, one of them probably being the yeast alcohol dehydrogenase (YADH), which is known to exhibit a (S)-enantioselectivity in Saccharomyces cerevisiae.  相似文献   

20.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号