首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that apolipoprotein D (apoD) could play a major role in mediating neuronal degeneration and regeneration in the CNS and the PNS. To investigate further the temporal pattern of apoD expression after experimental traumatic brain injury in the rat, male Sprague-Dawley rats were subjected to unilateral cortical impact injury. The animals were killed and examined for apoD mRNA and protein expression and for immunohistological analysis at intervals from 15 min to 14 days after injury. Increased apoD mRNA and protein levels were seen in the cortex and hippocampus ipsilateral to the injury site from 48 h to 14 days after the trauma. Immunohistological investigation demonstrated a differential pattern of apoD expression in the cortex and hippocampus, respectively: Increased apoD immunoreactivity in glial cells was detected from 2 to 3 days after the injury in cortex and hippocampus. In contrast, increased expression of apoD was seen in cortical and hippocampal neurons at later time points following impact injury. Concurrent histopathological examination using hematoxylin and eosin demonstrated dark, shrunken neurons in the cortex ipsilateral to the injury site. In contrast, no evidence of cell death was observed in the hippocampus ipsilateral to the injury site up to 14 days after the trauma. No evidence of increased apoD mRNA or protein expression or neuronal pathology by hematoxylin and eosin staining was detected in the contralateral cortex and hippocampus. Our results reveal induction of apoD expression in the cortex and hippocampus following traumatic brain injury in the rat. Our data also suggest that increased apoD expression may play an important role in cortical neuronal degeneration after brain injury in vivo. However, increased expression of apoD in the hippocampus may not necessarily be indicative of neuronal death.  相似文献   

2.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.  相似文献   

3.
Abstract: Excitatory amino acid (EAA) neurotransmitters may play a role in the pathophysiology of traumatic injury to the CNS. Although NMDA receptor antagonists have been reported to have therapeutic efficacy in animal models of brain injury, these compounds may have unacceptable toxicity for clinical use. One alternative approach is to inhibit the release of EAAs following traumatic injury. The present study examined the effects of administration of a novel sodium channel blocker and EAA release inhibitor, BW1003C87, or the NMDA receptor-associated ion channel blocker magnesium chloride on cerebral edema formation following experimental brain injury in the rat. Animals (n = 33) were subjected to fluid percussion brain injury of moderate severity (2.3 atm) over the left parietal cortex. Fifteen minutes after injury, the animals received a constant infusion of BW1003C87 (10 mg/kg, i.v.), magnesium chloride (300 µmol/kg, i.v.), or saline over 15 min (2.75 ml/kg/15 min). In all animals, regional tissue water content in brain was assessed at 48 h after injury, using the wet weight/dry weight technique. In saline-treated control animals, fluid percussion brain injury produced significant regional brain edema in injured left parietal cortex ( p < 0.001), the cortical area adjacent to the site of maximal injury ( p < 0.001), left hippocampus ( p < 0.001), and left thalamus ( p = 0.02) at 48 h after brain injury. Administration of BW1003C87 15 min postinjury significantly reduced focal brain edema in the cortical area adjacent to the site of maximal injury ( p < 0.02) and left hippocampus ( p < 0.01), whereas magnesium chloride attenuated edema in left hippocampus ( p = 0.02). These results suggest that excitatory neurotransmission may play an important role in the pathogenesis of posttraumatic brain edema and that pre- or post-synaptic blockade of glutamate receptor systems may attenuate part of the deleterious sequelae of traumatic brain injury.  相似文献   

4.
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.  相似文献   

5.
A growing body of evidence supports the role of free radicals in triggering the functional and metabolic disturbances following transient cerebral ischemia. This study was designed to evaluate whether the extent of reperfusion-induced inhibition of protein synthesis initiation as well as tissue injury can be reduced by Tanakan (Ginkgo biloba extract, EGb 761) (Beaufour-Ipsen Industrie). Rats received Tanakan in the dose of 40 mg/kg/day for 7 days before surgical intervention. Transient forebrain ischemia was induced by 4-vessel occlusion. Rats were subjected to 20 min of ischemia followed by 30 min, 4 h or 7 days of reperfusion. Protein synthesis rate, reinitiation ability and neurodegeneration in the frontal cortex and hippocampus were measured by the incorporation of radioactively labelled leucine into polypeptide chains in postmitochondrial supernatants and by Fluoro-Jade B staining. The protective effect was observed, concerning both the protein synthesis and the number of surviving neurons, in the Tanakan-treated groups. Tanakan significantly reduced the ischemia/reperfusion-induced inhibition of translation in the neocortex as well as in the highly sensitive hippocampus. Our results indicate that free radicals play an important role in the development of reperfusion-induced injury, and the treatment of ischemic and reperfused brain with free radical scavengers may reduce the severity of reperfusion damage.  相似文献   

6.
This study investigated the temporal expression and cell subtype distribution of activated caspase-3 following cortical impact-induced traumatic brain injury in rats. The animals were killed and examined for protein expression of the proteolytically active subunit of caspase-3, p18, at intervals from 6 h to 14 days after injury. In addition, we also investigated the effect of caspase-3 activation on proteolysis of the cytoskeletal protein alpha-spectrin. Increased protein levels of p18 and the caspase-3-specific 120-kDa breakdown product to alpha-spectrin were seen in the cortex ipsilateral to the injury site from 6 to 72 h after the trauma. Immunohistological examinations revealed increased expression of p18 in neurons, astrocytes, and oligodendrocytes from 6 to 72 h following impact injury. In contrast, no evidence of caspase-3 activation was seen in microglia at all time points investigated. Quantitative analysis of caspase-3-positive cells revealed that the number of caspase-3-positive neurons exceeded the number of caspase-3-positive glia cells from 6 to 72 h after injury. Moreover, concurrent assessment of nuclear histopathology using hematoxylin identified p18-immunopositive cells exhibiting apoptotic-like morphological profiles in the cortex ipsilateral to the injury site. In contrast, no evidence of increased p18 expression or alpha-spectrin proteolysis was seen in the ipsilateral hippocampus, contralateral cortex, or hippocampus up to 14 days after the impact. Our results are the first to demonstrate the concurrent expression of activated caspase-3 in different CNS cells after traumatic brain injury in the rat. Our findings also suggest a contributory role of activated caspase-3 in neuronal and glial apoptotic degeneration after experimental TBI in vivo.  相似文献   

7.
Neurotrauma, as in the case of traumatic brain injury, promotes protease over-activation characterized by the select fragmentation of brain proteins. The resulting polypeptides are indicators of biochemical processes, which can be used to study post-injury dynamics and may also be developed into biomarkers. To this end, we devised a novel mass spectrometry approach to characterize post-injury calpain proteolytic processing of myelin basic protein (MBP), a biomarker of brain injury that denotes white matter damage and recovery. Our approach exceeds conventional immunological assays in its deconvolution of multiple protein isoforms, its absolute quantification of proteolytic fragments and its polypeptide selectivity. We quantified and characterized post-injury proteolytic processing of all MBP isoforms identified in adult rat cortex. Further, the translation of calpain-cleaved MBP into CSF was verified following brain injury. We ascertained that the exon-6 sequence of MBP resulted in a characteristic shift in gel migration for intact and fragmented protein alike. We also found evidence for a second post-TBI cleavage event within exon-2 and for the dimerization of the post-TBI 4.3 kDa fragment. Ultimately, the novel methodology described here can be used to study MBP dynamics and other similar proteolytic events of relevance to brain injury and other CNS processes.  相似文献   

8.
The formation of oxidative DNA damage as a consequence of seizures remains little explored. We therefore investigated the regional and temporal profile of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) formation, a hallmark of oxidative DNA damage and DNA fragmentation in rat brain following seizures induced by systemic kainic acid (KA). Formation of 8-OHdG was determined via HPLC with electrochemical detection, and single- and double-stranded DNA breaks were detected using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl-transferase-mediated nick end-labeling (TUNEL), respectively. Systemic KA (11 mg/kg) significantly increased levels of 8-OHdG within the thalamus after 2 h, within the amygdala/piriform cortex after 4 h, and within the hippocampus after 8 h. Levels remained elevated up to sevenfold within these areas for 72 h. Smaller increases in 8-OHdG levels were also detected within the parietal cortex and striatum. PANT-positive cells were detected within the thalamus, amygdala/piriform cortex, and hippocampus 24-72 h following KA injection. TUNEL-positive cells appeared within the same brain regions and over a similar time course (24-72 h) but were generally lower in number. The present data suggest oxidative damage to DNA may be an early consequence of epileptic seizures and a possible initiation event in the progression of seizure-induced injury to DNA fragmentation and cell death.  相似文献   

9.
Programmed cell death occurs after ischemic, excitotoxic, and traumatic brain injury (TBI). Recently, a caspase-independent pathway involving intranuclear translocation of mitochondrial apoptosis-inducing factor (AIF) has been reported in vitro; but whether this occurs after acute brain injury was unknown. To address this question adult rats were sacrificed at various times after TBI. Western blot analysis on subcellular protein fractions demonstrated intranuclear localization of AIF in ipsilateral cortex and hippocampus at 2-72 h. Immunocytochemical analysis showed AIF labeling in neuronal nuclei with DNA fragmentation in the ipsilateral cortex and hippocampus. Immunoelectronmicroscopy verified intranuclear localization of AIF in hippocampal neurons after TBI, primarily in regions of euchromatin. Large-scale DNA fragmentation ( approximately 50 kbp), a signature event in AIF-mediated cell death, was detected in ipsilateral cortex and hippocampi by 6 h. Neuron-enriched cultures exposed to peroxynitrite also demonstrated intranuclear AIF and large-scale DNA fragmentation concurrent with impaired mitochondrial respiration and cell death, events that are inhibited by treatment with a peroxynitrite decomposition catalyst. Intranuclear localization of AIF and large-scale DNA fragmentation occurs after TBI and in neurons under conditions of oxidative/nitrosative stress, providing the first evidence of this alternative mechanism by which programmed cell death may proceed in neurons after brain injury.  相似文献   

10.
The effects of DSP-4 on brain NE levels and turnover in rats were investigated in six brain regions: cortex, hippocampus, cerebellum, brainstem, hypothalamus and locus coeruleus. Administration of 50 mg/kg of DSP-4 significantly decreased NE levels in all brain regions; greatest reductions occurred in the cortex (86% decrease) and in the hippocampus (91% decrease). Doses of DSP-4 less than 50 mg/kg did not significantly lower NE levels in other brain regions, except within the cerebellum. Levels of the NE metabolite 3-methoxy, 4-hydroxyphenylethylene glycol sulfate (MHPG-S04) declined in parallel with those of NE, except within the brainstem and the locus coeruleus. NE turnover, expressed as the ratio of the MHPG-S04 concentration to that of NE, was higher in the cortex and hippocampus than other regions in control animals, and NE turnover significantly increased only in these two areas after the administration of 50 mg/kg of DSP-4 (p less than 0.01). There were no significant changes in the levels of dopamine and a significant decrease of serotonin only in the striatum. These results indicate that DSP-4 is a neurotoxin with a strong predilection for noradrenergic neurons, that its effects vary according to brain region and that its administration increases NE turnover in those brain regions showing the greatest depletion of NE.  相似文献   

11.
DNA fragmentation, an early event in neuronal death following traumatic brain injury, may be triggered by the 40-kDa subunit of DNA fragmentation factor (DFF40). DFF40 is typically bound to the 45-kDa subunit of DFF (DFF45), and activation of DFF40 may occur as a result of caspase-3-mediated cleavage of DFF45 into 30- and 11-kDa fragments. In this study, the intracellular distribution of DFF45 and DFF40 was examined following lateral fluid percussion brain injury of moderate severity (2.4-2.7 atm) in male Sprague-Dawley rats. In the cytosolic fraction (S1) of the injured cortex at 2 and 24 h postinjury, significant decreases in the intensities of DFF45-like proteins at 45- and 32-kDa bands and a concomitant increase in the 11-kDa bands were observed (p < 0.05 vs. uninjured controls). A significant decrease in the intensities of the 32-kDa band in the nuclear (P1) fraction of the injured cortex was observed at 30 min and 2 h postinjury (p < 0.01). Concomitantly, a decrease in DFF40 was observed in the cortical S1 fraction at 2 and 24 h (p < 0.05) and in the P1 fraction at 30 min and 2 h postinjury (p < 0.01). In the hippocampus, DFF45 decreased at 30 min in the P1 and 2 h in the S1 fraction (p < 0.05) and recovered by 24 h postinjury, whereas DFF40 was significantly decreased in the S1 and increased in the P1 fraction at both 2 and 24 h (p < 0.01), which indicated a translocation of DFF40 from cytosol to nucleus. These data are the first to demonstrate that changes in DFF proteins occur after brain trauma and suggest that these changes may play a role in apoptotic cell death via caspase-3-DFF45/DFF40-DNA cleavage observed following traumatic brain injury.  相似文献   

12.
We have previously demonstrated that 4-day-treatment of mice with bilobalide, a sesquiterpene of Ginkgo biloba L., increases GABA levels in mouse brain, but, effects of chronic treatment with it are not clear. To study effects of chronic treatment of mice with bilobalide on amino acid levels in the brain, we determined the levels of aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in the hippocampus, striatum and cortex. Bilobalide (3 mg/kg/day) was administered orally to 4-week-old mice for 40 days. Bilobalide treatment resulted in a significant increase in the levels of glutamate, aspartate, gamma-aminobutyric acid (GABA), and glycine in the hippocampus of mice compared with the control. An increased level of glycine after bilobalide treatment was also detected in the striatum. In the cortex, bilobalide increased the GABA level, whereas it decreased the level of aspartate. These changes in the levels of various amino acids may be involved in the broad spectrum of pharmacological activities of the extract of Ginkgo biloba on the central nervous system.  相似文献   

13.
Autophagy has been implicated in several neurodegenerative diseases and recently its role in acute brain injury has received increased interest. In our study, we investigated the profiles of autophagy-linked proteins (MAP-LC3 (Atg8), beclin-1 (Atg6) and the beclin-1-binding protein, bcl-2, following controlled cortical impact injury in rats—a model for moderate-to-severe traumatic brain injury. We observed significant increases in the levels of the processed form of LC3 (LC3-II) in the ipsilateral cortex 2 h to 2 days after injury when compared to sham. Furthermore, the beclin-1/bcl-2 ratio in the ipsilateral cortex was found to have increased from 1 and 2 days after injury. Since both of these changes are established autophagy-enabling events, and, based on these data, we propose that autophagy, plays a role in the manifestation of cell injury following brain trauma.  相似文献   

14.
Zhu M  Fan XL  Yang WL  Jiang Y  Ma L 《生理学报》2004,56(5):559-565
G蛋白耦联受体激酶5(GRK5)在G蛋白耦联受体信号转导中起重要调节作用。本文研究了单次给予成瘾性药物吗啡、海洛因和可卡因对大鼠脑内GRK5mRNA水平的调控作用,并选取吗啡为代表,观察单次或多次给予吗啡后大鼠脑内GRK5蛋白含量的变化。结果发现:(1)单次给予吗啡(10mg/kg)、海洛因(1mg/kg)或可卡因(15mg/kg)均可引起大鼠大脑顶叶皮层、颞叶皮层和海马的GRK5 mRNA水平显著上升;(2)单次或多次给予吗啡注射可以显著上调大鼠大脑皮层GRK5蛋白含量,而多次给予吗啡显著下调丘脑GRK5含量。我们的结果首次证明成瘾性药物对大脑皮层、海马等脑区的GRK5在mRNA水平和蛋白水平都有调控作用,提示GRK5可能在精神活性物质的成瘾中起作用。  相似文献   

15.
Neocortex and hippocampus play important role in motor activity, neuronal plasticity and learning and memory mechanisms. Electroencephalographic (EEG) activity of neocortex and hippocampus of rat following NMDA-receptor agonist, N-methyl-D-aspartate (NMDA), 0.25-2 nmol in 10 microliters, ICV and noncompetitive NMDA-receptor antagonists, MK 801 (0.025-0.1 mg/kg, ip) and ketamine (10-50 mg/kg, ip) at OH, 1/2H, 4H, 8H and 24H was recorded. The electrodes were implanted stereotaxically in hippocampus and neocortex respectively. NMDA (0.25 and 1 nmol) showed longer lasting decrease in amplitude in hippocampus and in frequency in cortical neurons while 2 nmol produced epileptogenic neurotoxicity. Opposite effect i.e. increase in amplitude in both, hippocampus and neocortex was observed with MK 801 and ketamine and these agents also showed longer lasting influence. Administration of MK 801 (0.05 mg/kg) and ketamine (50 mg/kg) prior to NMDA 2 nmol protected 40% animals from NMDA-induced neurotoxicity and blockade of NMDA-induced long term influence. The EEG effect of NMDA agonist and NMDA-induced neurotoxicity at higher dose and its modification by NMDA-antagonist, MK 801 and ketamine suggest that beside NMDA agonists (NMDA), its antagonists may, also affect long lasting changes in hippocampus and cortex. These antagonists reverse NMDA-mediated long term influence in these brain areas.  相似文献   

16.
Y Ida  M Tanaka  A Tsuda  S Tsujimaru  N Nagasaki 《Life sciences》1985,37(26):2491-2498
One-hour immobilization stress increased levels of the major metabolite of brain noradrenaline (NA), 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate (MHPG-SO4), in nine brain regions of rats. Diazepam at 5 mg/kg attenuated the stress-induced increases in MHPG-SO4 levels in the hypothalamus, amygdala, hippocampus, cerebral cortex and locus coeruleus (LC) region, but not in the thalamus, pons plus medulla oblongata excluding the LC region and basal ganglia. The attenuating effects of the drug on stress-induced increases in metabolite levels in the above regions were completely antagonized by pretreatment with Ro 15-1788 at 5 or 10 mg/kg, a potent and specific benzodiazepine (BDZ) receptor antagonist. When given alone, Ro 15-1788 did not affect the increases in MHPG-SO4 levels. Behavioral changes observed during immobilization stress such as vocalization and defecation, were also attenuated by diazepam at 5 mg/kg and this action of diazepam was antagonized by Ro 15-1788 at 10 mg/kg, which by itself had no effects on these behavioral measurements. These findings suggest: (1) that diazepam acts via BDZ receptors to attenuate stress-induced increases in NA turnover selectively in the hypothalamus, amygdala, hippocampus, cerebral cortex and LC region and (2) that this decreased noradrenergic activity might be closely related to relief of distress-evoked hyperemotionality, i.e., fear and/or anxiety in animals.  相似文献   

17.
Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be impacted following SCI. Here we examined effects of isolated thoracic SCI in rats on cognition, brain inflammation, and neurodegeneration. We show for the first time that SCI causes widespread microglial activation in the brain, with increased expression of markers for activated microglia/macrophages, including translocator protein and chemokine ligand 21 (C–C motif). Stereological analysis demonstrated significant neuronal loss in the cortex, thalamus, and hippocampus. SCI caused chronic impairment in spatial, retention, contextual, and fear-related emotional memory—evidenced by poor performance in the Morris water maze, novel objective recognition, and passive avoidance tests. Based on our prior work implicating cell cycle activation (CCA) in chronic neuroinflammation after SCI or traumatic brain injury, we evaluated whether CCA contributed to the observed changes. Increased expression of cell cycle-related genes and proteins was found in hippocampus and cortex after SCI. Posttraumatic brain inflammation, neuronal loss, and cognitive changes were attenuated by systemic post-injury administration of a selective cyclin-dependent kinase inhibitor. These studies demonstrate that chronic brain neurodegeneration occurs after isolated SCI, likely related to sustained microglial activation mediated by cell cycle activation.  相似文献   

18.
AIM:To investigate the impact of MK-801 on gene expression patterns genome wide in rat brain regions. METHODS:Rats were treated with an intraperitoneal injection of MK-801 [0.08(low-dose) and 0.16(highdose) mg/kg] or NaC l(vehicle control). In a first series of experiment,the frontoparietal electrocorticogram was recorded 15 min before and 60 min after injection. In a second series of experiments,the whole brain of each animal was rapidly removed at 40 min post-injection,and different regions were separated:amygdala,cerebral cortex,hippocampus,hypothalamus,midbrain and ventral striatum on ice followed by DNA microarray(4 × 44 K whole rat genome chip) analysis.RESULTS:Spectral analysis revealed that a single systemic injection of MK-801 significantly and selectively augmented the power of baseline gamma frequency(30-80 Hz) oscillations in the frontoparietal electroencephalogram. DNA microarray analysis showed the largest number(up- and down- regulations) of gene expressions in the cerebral cortex(378),midbrain(376),hippocampus(375),ventral striatum(353),amygdala(301),and hypothalamus(201) under low-dose(0.08 mg/kg) of MK-801. Under high-dose(0.16 mg/kg),ventral striatum(811) showed the largest number of gene expression changes. Gene expression changes were functionally categorized to reveal expression of genes and function varies with each brain region.CONCLUSION:Acute MK-801 treatment increases synchrony of baseline gamma oscillations,and causes very early changes in gene expressions in six individual rat brain regions,a first report.  相似文献   

19.
Galantamine (GAL) is a selective, competitive and reversible acetylcholinesterase (AChE) inhibitor, which increases the activity of the cholinergic system and hence gives rise to an improvement of cognitive functions in patients suffering from dementia of Alzheimer type. L-Carnitine (CAR) is a natural component of the mammalian tissue and is known to increase penetration of some chemical compounds/groups across biological membranes. The aim of this study was to evaluate the influence of pretreatment with CAR on AChE inhibition caused by GAL in selected brain parts in rat (basal ganglia, septum, frontal cortex, hippocampus) and in hypophysis, which does not lay beyond the blood-brain-barrier. During the first stage of the study, GAL was administered i.m. in different doses ranging from 2.5 to 10 mg/kg. The highest degree of AChE dose dependent inhibition was observed in hypophysis, while that in CNS was lower and became apparent in frontal cortex and hippocampus only after the administration of the dose of 10 mg/kg i.m. In the second stage, CAR was administered daily during 3 consecutive days at a dose of 250 mg/kg p.o. prior to the administration of GAL (10 mg/kg i.m.). Pretreatment with CAR enhanced trend of AChE inhibition in all selected brain parts comparing with single GAL administration, however, significant difference was not observed. Comparing these results with control group, statistical significance was found in frontal cortex, hippocampus and hypophysis.  相似文献   

20.
C J Gibson 《Life sciences》1988,42(1):95-102
The amino acids tyrosine and DL-threo-3,4-dihydroxyphenylserine (DL-threo-DOPS) were compared for their effectiveness in increasing central nervous system norepinephrine (NE) turnover in both saline and DSP-4 pretreated mice. NE was decreased significantly in cortex, hippocampus and cerebellum, and only slightly in hypothalamus and brainstem two weeks after a single intraperitoneal injection of the neurotoxin DSP-4. Levels of the major NE metabolite, 3-methoxyl-4-hydroxyphenylethylene glycol (MHPG), decreased in parallel in these five brain regions. Neither administration of tyrosine (250 mg/kg, as the ethyl ester, i.p.) nor DL-threo-DOPS (200 mg/kg, i.p.) affected regional NE concentration. However, after tyrosine administration, MHPG levels increased significantly in cortex in control mice and in cortex and hippocampus of DSP-4 pretreated mice. In all five brain noradrenergic regions MHPG level increased after DL-threo-DOPS administration and this increase was enhanced (approximately doubled) in DSP-4 pretreated mice. Thus, both amino acids may be useful as precursors of central NE when its level is depleted (e.g. following administration of DSP-4); DL-threo-DOPS producing a generalized increase in brain NE turnover, while increases following tyrosine are specific to those areas in which neuronal activity is increased i.e. cortex and hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号