首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The 5' boundary of the chromosomal domain of the human apolipoprotein B (apoB) gene in intestinal cells has been localized and characterized. It is composed of two kinds of boundary elements; the first, functional boundary is an insulator activity exhibited by a 1.8 kb DNA fragment located between -58 and -56 kb upstream of the human apoB promoter. In this region, an enhancer-blocking activity has been mapped to a CTCF binding site that is located upstream of two apoB intestinal enhancers (IEs), the 315 IE and the 485 IE. The CTCF site represents a boundary between two types of chromatin structure: an open, DNaseI-sensitive region 3' of the CTCF site containing the intestinal regulatory elements and a closed, DNaseI-resistant region 5' of the CTCF site. The 1.8 kb fragment harboring the CTCF site also insulated mini-white transgenes against position effects in Drosophila melanogaster. The second, structural boundary is represented by a nuclear matrix attachment region (MAR), situated about 3 kb 5' of the CTCF site. This MAR may represent the 5' anchorage site for a chromosomal loop that functions to bring the intestinal regulatory elements closer to the apoB promoter.  相似文献   

4.
5.
6.
《The Journal of cell biology》1996,134(5):1333-1344
We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta- galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.  相似文献   

7.
8.
The human IL-3 gene is expressed by activated T cells, mast cells, and eosinophils. We previously identified an enhancer 14 kb upstream of the IL-3 gene, but this element only functioned in a subset of T cells and not in mast cells. To identify additional mechanisms governing IL-3 gene expression, we mapped DNase I hypersensitive (DH) sites and evolutionarily conserved DNA sequences in the IL-3 locus. The most conserved sequence lies 4.5 kb upstream of the IL-3 gene and it encompassed an inducible cyclosporin A-sensitive DH site. A 245-bp fragment spanning this DH site functioned as a cyclosporin A-sensitive enhancer, and was induced by calcium and kinase signaling pathways in both T cells and mast cells via an array of three NFAT sites. The enhancer also encompassed AML1, AP-1, and Sp1 binding sites that potentially mediate function in both T and myeloid lineage cells, but these sites were not required for in vitro enhancer function in T cells. In stably transfected T cells, the -4.5-kb enhancer cooperated with the -14-kb enhancer to activate the IL-3 promoter. Hence, the IL-3 gene is regulated by two enhancers that have distinct but overlapping tissue specificities. We also identified a prominent constitutive DH site at -4.1 kb in T cells, mast cells, and CD34(+) myeloid cells. This element lacked in vitro enhancer function, but may have a developmental role because it appears to be the first DH site to exist upstream of the IL-3 gene during hemopoietic development before IL-3 expression.  相似文献   

9.
The cut locus of Drosophila is an interesting example of a complex eukaryotic locus responsible for the development of many tissues and organs. Most of this locus is regulatory. The entire locus was cloned by Tchurikov et al. in 1986 and Blochlinger et al. in 1988. The wing ctn enhancer located 80 kb upstream of the promoter was earlier found in a 2.7 kb EcoRI-BamHI DNA fragment. The locus region 65-80 kb remote from the promoter was assumed to control the development of wings and vibrissae. We have found a new enhancer region in the ct6 region of the locus, which was in a 5 kb BamHI-EcoRI DNA fragment adjacent to the ctn enhancer. This region is responsible for the expression of the reporter lacZ gene in many tissues and organs at all stages of Drosophila development (at least in the intestine, Malpighian tubules, thoracic and abdominal sensory organs, thoracic ganglia and in ring glands). Thus, the region located 75 kb upstream of the promoter has some properties of the locus control region (LCR).  相似文献   

10.
11.
12.
The reciprocally imprinted H19 and Igf2 genes form a co-ordinately regulated 130 kb unit in the mouse controlled by widely dispersed enhancers, epigenetically modified silencers and an imprinting control region (ICR). Comparative human and mouse genomic sequencing between H19 and Igf2 revealed two novel regions of strong homology upstream of the ICR termed H19 upstream conserved regions (HUCs). Mouse HUC1 and HUC2 act as potent enhancers capable of driving expression of an H19 reporter gene in a range of mesodermal tissues. Intriguingly, the HUC sequences are also transcribed bi-allelically in mouse and human, but their expression pattern in neural and endodermal tissues in day 13.5 embryos is distinct from their enhancer function. The location of the HUC mesodermal enhancers upstream of the ICR and H19, and their capacity for interaction with both H19 and Igf2 requires critical re-evaluation of the cis-regulation of imprinted gene expression of H19 and Igf2 in a range of mesodermal tissues. We propose that these novel sequences interact with the ICR at H19 and the epigenetically regulated silencer at differentially methylated region 1 (DMR1) of Igf2.  相似文献   

13.
14.
An elevated plasma level of apolipoprotein B-containing lipoproteins is a risk factor for atherosclerotic cardiovascular disease. Subtle genetic abnormalities in gene expression including an increased expression of the APOB gene may play an important role in determining overall risk. In an attempt to increase mouse Apob expression, we used gene targeting and duplicated approximately 65 kb of genomic DNA containing the Apob locus in its natural genomic position in mice. While we successfully generated mice carrying the Apob gene duplication, the amount of the total Apob mRNA was not increased in their liver. In the intestine, total Apob mRNA was reduced to half of the wild-type mice. Plasma lipids in the Apob duplication mice were not altered. Expression analyses showed that the proximal Apob gene in the duplicated locus was preferentially expressed in both tissues suggesting a limitation of tissue-specific enhancer function. The previously characterized distant intestinal control element was not duplicated, explaining the unequal ratio of intestinal Apob expression. While the existence of an additional liver-specific enhancer element is unknown, our findings suggest the presence of an additional enhancer outside the duplicated region, and that Apob gene expression is more complicated than previously thought.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号