首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1beta compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.  相似文献   

2.
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.  相似文献   

3.
Neuraminidase inhibitors (NAIs) are antivirals designed to target conserved residues at the neuraminidase (NA) enzyme active site in influenza A and B viruses. The conserved residues that interact with NAIs are under selective pressure, but only a few have been linked to resistance. In the A/Wuhan/359/95 (H3N2) recombinant virus background, we characterized seven charged, conserved NA residues (R118, R371, E227, R152, R224, E276, and D151) that directly interact with the NAIs but have not been reported to confer resistance to NAIs. These NA residues were replaced with amino acids that possess side chains having similar properties to maintain their original charge. The NA mutations we introduced significantly decreased NA activity compared to that of the A/Wuhan/359/95 recombinant wild-type and R292K (an NA mutation frequently reported to confer resistance) viruses, which were analyzed for comparison. However, the recombinant viruses differed in replication efficiency when we serially passaged them in vitro; the growth of the R118K and E227D viruses was most impaired. The R224K, E276D, and R371K mutations conferred resistance to both zanamivir and oseltamivir, while the D151E mutation reduced susceptibility to oseltamivir only (approximately 10-fold) and the R152K mutation did not alter susceptibility to either drug. Because the R224K mutation was genetically unstable and the emergence of the R371K mutation in the N2 subtype is statistically unlikely, our results suggest that only the E276D mutation is likely to emerge under selective pressure. The results of our study may help to optimize the design of NAIs.  相似文献   

4.
Multiple interactions among the competence proteins of Bacillus subtilis   总被引:2,自引:0,他引:2  
Proteins required for transformation of Bacillus subtilis and other competent bacteria are associated with the membrane or reside in the cytosol. Previous work has shown that RecA, ComGA, ComFA and SsbB are directed to the cell poles in competent cells, and that the uptake of transforming DNA occurs preferentially at the poles. We show that ComGA, ComFA, DprA (Smf), SsbB (YwpH), RecA and YjbF (CoiA) are located at the cell poles, where they appear to colocalize. Using fluorescence resonance energy transfer, we have shown that these six competent (Com) proteins reside in close proximity to one another. This conclusion was supported by the effects of com gene knockouts on the stabilities of Com proteins. Data obtained from the com gene knockout studies, as well as information from other sources, extend the list of proteins in the transformation complex to include ComEC and ComEA. Because ComGA and ComFA are membrane-associated, while DprA, SsbB, RecA and YjbF are soluble, a picture emerges of a large multiprotein polar complex, involving both cytosolic and membrane proteins. This complex mediates the binding and uptake of single-stranded DNA, the protection of this DNA from cellular nucleases and its recombination with the recipient chromosome.  相似文献   

5.
Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA‐dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA‐ComFC duo at the interface between DNA uptake and DNA recombination during transformation.  相似文献   

6.
The ATP-binding cassette transporter ABCA3 mediates uptake of choline-phospholipids into intracellular vesicles and is essential for surfactant metabolism in lung alveolar type II cells. We have shown previously that ABCA3 mutations in fatal surfactant deficiency impair intracellular localization or ATP hydrolysis of ABCA3 protein. However, the mechanisms underlying the less severe phenotype of patients with ABCA3 mutation are unclear. In this study, we characterized ABCA3 mutant proteins identified in pediatric interstitial lung disease (pILD). E292V (intracellular loop 1), E690K (adjacent to Walker B motif in nucleotide binding domain 1), and T1114M (8th putative transmembrane segment) mutant proteins are localized mainly in intracellular vesicle membranes as wild-type protein. Lipid analysis and sucrose gradient fractionation revealed that the transport function of E292V mutant protein is moderately preserved, whereas those of E690K and T1114M mutant proteins are severely impaired. Vanadate-induced nucleotide trapping and photoaffinity labeling of wild-type and mutant proteins using 8-azido-[(32)P]ATP revealed an aberrant catalytic cycle in these mutant proteins. These results demonstrate the importance of a functional catalytic cycle in lipid transport of ABCA3 and suggest a pathophysiological mechanism of pILD due to ABCA3 mutation.  相似文献   

7.
In order to improve our understanding of the role of the yeast MSH1 gene in error avoidance in mitochondrial DNA, two msh1 alleles were constructed, which encode proteins with amino acid substitutions in an ATP-binding domain that is highly conserved among MutS homologs. Here, we report that moderate overexpression of the msh1-R813W or msh1-G776D allele, in strains which also carry the wild-type MSH1 allele, slightly increases the frequency of mutations conferring resistance to erythromycin (E(r)) and elevates the frequency of alterations within a polyGT tract present in mitochondrial DNA (mtDNA). This result indicates that the mutant alleles confer a dominant mitochondrial mutator phenotype and strongly suggests that the ATP-binding domain plays a crucial role in the in vivo function of Msh1p. Interestingly, we have found that overexpression of wild-type MSH1 has opposite effects on the stability of polyGT vs. polyAT tracts present in mtDNA; excess of Msh1p slightly increases the stability of polyGT tracts, whereas the stability of polyAT tracts is dramatically decreased. We show that although overexpression of msh1-R813W or msh1-G776D also results in a marked overall increase in the frequency of alterations in polyAT tracts, the spectrum of alterations differs from that found in cells overexpressing MSH1; large deletions predominate in the latter case, while 2-bp deletions are generated in cells that overproduce the mutant msh1p. This result strongly suggests that the mutations in the ATP binding domain change the specificity of the protein with respect to the recognition of potentially mutagenic structures in mtDNA.  相似文献   

8.
The ATP-dependent deoxyribonuclease enzyme complex (AddAB) of Bacillus subtilis possesses two consensus ATP-binding sequences, located in the N-terminal region of both subunits. The highly conserved lysine residues in both consensus ATP-binding sequences were replaced by glycine, resulting in the mutant enzyme complexes AddAB-A-K36G (AddA*B) and AddAB-B-K14G (AddAB*). The mutation in subunit AddA reduced DNA repair and chromosomal transformation, and abolished bacteriophage PBS1-mediated transduction. This mutation also resulted in a complete loss of the ATP-dependent exonuclease and helicase activity. In contrast, the mutation in subunit AddB had only marginal effects. The recF and addAB genes are not required for transformation with plasmid DNA, but have overlapping activities in transformation with chromosomal DNA. By contrast to RecF, the AddAB enzyme is essential for PBS1-mediated transduction. However, recF has a more important function with respect to DNA repair than addAB .  相似文献   

9.
The 19S regulatory particle of the yeast 26S proteasome consists of six related ATPases (Rpt proteins) and at least 11 non-ATPase proteins (Rpn proteins). RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth. To determine which subunit(s) of the 26S proteasome interact(s) with Rpn12, we attempted to screen for mutations that cause synthetic lethality in the presence of the rpn12-1 (formerly nin1-1) mutation. Among the candidates recovered was a new allele of RPT1 (formerly CIM5). This mutant allele was designated rpt1-2; on its own this mutation caused no phenotypic change, whereas the rpn12-1 rpt1-2 double mutant was lethal, suggesting a strong interaction between Rpn12 and Rpt1. The site of the rpt1-2 mutation was determined by DNA sequencing of the RPT1 locus retrieved from the mutant, and a single nucleotide alteration was found. This changes amino acid 446 of the RPT1 product from alanine to valine. The alanine residue is conserved in all Rpt proteins, except Rpt5, but no function has yet been assigned to the region that contains it. We propose that this region is necessary for Rpt1 to interact with Rpn12. The terminal phenotype of the rpn12-1 rpt1-2 double mutant was not cell cycle specific, suggesting that in the double mutant cells the function of the 26S proteasome is completely eliminated, thereby inducing multiple defects in cellular functions.  相似文献   

10.
11.
Nishant KT  Plys AJ  Alani E 《Genetics》2008,179(2):747-755
Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal-binding motif DQHA(X)(2)E(X)(4)E that is found in a subset of MLH proteins predicted to have endonuclease activities (Kadyrov et al. 2006). Mutations within this motif in human PMS2 and Saccharomyces cerevisiae PMS1 disrupted the endonuclease and mismatch repair activities of MLH1-PMS2 and MLH1-PMS1, respectively (Kadyrov et al. 2006, 2007; Erdeniz et al. 2007). As a first step in determining whether such an activity is required during meiosis, we made mutations in the MLH3 putative endonuclease domain motif (-D523N, -E529K) and found that single and double mutations conferred mlh3-null-like defects with respect to meiotic spore viability and crossing over. Yeast two-hybrid and chromatography analyses showed that the interaction between MLH1 and mlh3-D523N was maintained, suggesting that the mlh3-D523N mutation did not disrupt the stability of MLH3. The mlh3-D523N mutant also displayed a mutator phenotype in vegetative growth that was similar to mlh3Delta. Overexpression of this allele conferred a dominant-negative phenotype with respect to mismatch repair. These studies suggest that the putative endonuclease domain of MLH3 plays an important role in facilitating mismatch repair and meiotic crossing over.  相似文献   

12.
In a working model for the uptake of transforming DNA based on evidence taken from both Bacillus subtilis and Streptococcus pneumoniae, the ComG proteins are proposed to form a structure that provides access for DNA to the ComEA receptor through the peptidoglycan. DNA would then be delivered to the ComEC-ComFA transport complex. A DNA strand would be degraded by a nuclease, while its complement is pulled into the cell by ComFA through an aqueous pore formed by ComEC. The nuclease is known in S. pneumoniae only as EndA. We have examined the processing (i.e. binding, degradation and internalization) of DNA in S. pneumoniae strains lacking candidate uptake proteins. Mutants were generated by transposon insertion in endA, comEA/C, comFA/C, comGA and dprA. Processing of DNA was abolished only in a comGA mutant. As significant binding was measured in comEA mutants, we suggest the existence of two stages in binding: surface attachment (abolished in a comGA mutant) required for and preceding deep binding (by ComEA). Abolition of degradation in comGA and comEA mutants indicated that, despite its membrane location, EndA cannot access donor DNA by itself. We propose that ComEA is required to deliver DNA to EndA. DNA was still bound and degraded in comEC and comFA mutants. We conclude that recruitment of EndA can occur in the absence of ComEC or ComFA and that EndA is active even when the single strands it produces are not pulled into the cell. Finally, inactivation of dprA had no effect on the internalization of DNA, indicating that DprA is required at a later stage in transformation.  相似文献   

13.
The loss of DNA helicase II (UvrD) in Escherichia coli results in sensitivity to UV light and increased levels of spontaneous mutagenesis. While the effects of various uvrD alleles have been analyzed in vivo, the proteins produced by these alleles have not been examined in any detail. We have cloned one of these alleles, uvrD252, and determined the site of the mutation conferring the phenotype. In addition, the protein it encodes has been purified to homogeneity and characterized in vitro. The mutation responsible for the phenotype was identified as a glycine-to-aspartic-acid change in the putative ATP-binding domain. In comparison to wild-type DNA helicase II, the UvrD252 enzyme exhibited reduced levels of ATPase activity and a large increase in the Km for ATP. The ability of UvrD252 to unwind DNA containing single-stranded regions, as well as DNA containing only nicks, was reduced in comparison to that of the wild-type enzyme. Possible interpretations of these results in relation to the phenotypes of the uvrD252 mutant are discussed. This represents the first detailed analysis of the biochemical properties of a mutant DNA helicase II protein.  相似文献   

14.
The 19S regulatory particle of the yeast 26S proteasome consists of six related ATPases (Rpt proteins) and at least 11 non-ATPase proteins (Rpn proteins). RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth. To determine which subunit(s) of the 26S proteasome interact(s) with Rpn12, we attempted to screen for mutations that cause synthetic lethality in the presence of the rpn12-1 (formerly nin1-1) mutation. Among the candidates recovered was a new allele of RPT1 (formerly CIM5). This mutant allele was designated rpt1-2; on its own this mutation caused no phenotypic change, whereas the rpn12-1 rpt1-2 double mutant was lethal, suggesting a strong interaction between Rpn12 and Rpt1. The site of the rpt1-2 mutation was determined by DNA sequencing of the RPT1 locus retrieved from the mutant, and a single nucleotide alteration was found. This changes amino acid 446 of the RPT1 product from alanine to valine. The alanine residue is conserved in all Rpt proteins, except Rpt5, but no function has yet been assigned to the region that contains it. We propose that this region is necessary for Rpt1 to interact with Rpn12. The terminal phenotype of the rpn12-1 rpt1-2 double mutant was not cell cycle specific, suggesting that in the double mutant cells the function of the 26S proteasome is completely eliminated, thereby inducing multiple defects in cellular functions. Received: 1 February 1999 / Accepted: 5 May 1999  相似文献   

15.
16.
Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase activity of each mutant protein demonstrated a kcat that was < 0.5% of that of the wild-type protein, with no significant change in the apparent Km for ATP. The E221Q mutant protein exhibited no detectable unwinding of either partial duplex or blunt duplex DNA substrates. The D220NE221Q mutant, however, catalyzed unwinding of both partial duplex and blunt duplex substrates, but at a greatly reduced rate compared with that of the wild-type enzyme. Both mutants were able to bind DNA. Thus, the motif II mutants E221Q and D220NE221Q were able to bind ATP and DNA to the same extent as wild-type helicase II but demonstrate a significant reduction in ATP hydrolysis and helicase functions. The mutant uvrD alleles were also characterized by examining their abilities to complement the mutator and UV light-sensitive phenotypes of a uvrD deletion mutant. Neither the uvrDE221Q nor the uvrDD220NE221Q allele, supplied on a plasmid, was able to complement either phenotype. Further genetic characterization of the mutant uvrD alleles demonstrated that uvrDE221Q confers a dominant negative growth phenotype; the uvrDD220NE221Q allele does not exhibit this effect. The observed difference in effect on viability may reflect the gene products' dissimilar kinetics for unwinding duplex DNA substrates in vitro.  相似文献   

17.
The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1β compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.  相似文献   

18.
Single-amino-acid changes in a highly conserved central region of the human immunodeficiency virus type 1 (HIV-1) integrase protein were analyzed for their effects on viral protein synthesis, virion morphogenesis, and viral replication. Alteration of two amino acids that are invariant among retroviral integrases, D116 and E152 of HIV-1, as well as a mutation of the highly conserved amino acid S147 blocked viral replication in two CD4+ human T-cell lines. Mutations of four other highly conserved amino acids in the region had no detectable effect on viral replication, whereas mutations at two positions, N117 and Y143, resulted in viruses with a delayed-replication phenotype. Defects in virion precursor polypeptide processing, virion morphology, or viral DNA synthesis were observed for all of the replication-defective mutants, indicating that changes in integrase can have pleiotropic effects on viral replication.  相似文献   

19.
A spontaneous rpsL mutant of Thermus thermophilus was isolated in a search for new selection markers for this organism. This new allele, named rpsL1, encodes a K47R/K57E double mutant S12 ribosomal protein that confers a streptomycin-dependent (SD) phenotype to T. thermophilus. Models built on the available three-dimensional structures of the 30S ribosomal subunit revealed that the K47R mutation directly affects the streptomycin binding site on S12, whereas the K57E does not apparently affect this binding site. Either of the two mutations conferred the SD phenotype individually. The presence of the rpsL1 allele, either as a single copy inserted into the chromosome as part of suicide plasmids or in multicopy as replicative plasmids, produced a dominant SD phenotype despite the presence of a wild-type rpsL gene in a host strain. This dominant character allowed us to use the rpsL1 allele not only for positive selection of plasmids to complement a kanamycin-resistant mutant strain, but also more specifically for the isolation of deletion mutants through a single step of negative selection on streptomycin-free growth medium.  相似文献   

20.
Effects of tumor-associated mutations on Rad54 functions   总被引:2,自引:0,他引:2  
Yeast RAD54 gene, a member of the RAD52 epistasis group, plays an important role in homologous recombination and DNA double strand break repair. Rad54 belongs to the Snf2/Swi2 protein family, and it possesses a robust DNA-dependent ATPase activity, uses free energy from ATP hydrolysis to supercoil DNA, and cooperates with the Rad51 recombinase in DNA joint formation. There are two RAD54-homologous genes in human cells, hRAD54 and RAD54B. Mutations in these human genes have been found in tumors. These tumor-associated mutations map to conserved regions of the hRad54 and hRad54B proteins. Here we introduced the equivalent mutations into the Saccharomyces cerevisiae RAD54 gene in an effort to examine the functional consequences of these gene changes. One mutant, rad54 G484R, showed sensitivity to DNA-damaging agents and reduced homologous recombination rates, indicating a loss of function. Even though the purified rad54 G484R mutant protein retained the ability to bind DNA and interact with Rad51, it was nearly devoid of ATPase activity and was similarly defective in DNA supercoiling and D-loop formation. Two other mutants, rad54 N616S and rad54 D442Y, were not sensitive to genotoxic agents and behaved like the wild type allele in homologous recombination assays. Consistent with the mild phenotype associated with the rad54 N616S allele, its encoded protein was similar to wild type Rad54 protein in biochemical attributes. Because dysfunctional homologous recombination gives rise to genome instability, our results are consistent with the premise that tumor-associated mutations in hRad54 and Rad54B could contribute to the tumor phenotype or enhance the genome instability seen in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号