首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.  相似文献   

2.
A method is described for forming two-dimensional (2-D) paracrystalline complexes of F-actin and bundling/gelation proteins on positively charged lipid monolayers. These arrays facilitate detailed structural studies of protein interactions with F-actin by eliminating superposition effects present in 3-D bundles. Bundles of F-actin have been produced using the glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase, the cytoskeletal protein erythrocyte adducin as well as smooth muscle alpha-actinin from chicken gizzard. All of the 2-D bundles formed contain F-actin with a 13/6 helical structure. F-actin-aldolase bundles have an interfilament spacing of 12.6 nm and a superlattice arrangement of actin filaments that can be explained by expression of a local twofold axis in the neighborhood of the aldolase. Well ordered F-actin-alpha-actinin 2-D bundles have an interfilament spacing of 36 nm and contain crosslinks 33 nm in length angled approximately 25-35 degrees to the filament axis. Images and optical diffraction patterns of these bundles suggest that they consist of parallel, unipolar arrays of actin filaments. This observation is consistent with an actin crosslinking function at adhesion plaques where actin filaments are bound to the cell membrane with uniform polarity.  相似文献   

3.
alpha-Actinin purified from chicken gizzard smooth muscle was characterized in comparison with alpha-actinins from chicken striated muscles, or fast-skeletal muscle, slow-skeletal muscle, and cardiac muscle. The gizzard alpha-actinin molecule consisted of two apparently identical subunits with a molecular weight of 100,000 on SDS-polyacrylamide gel electrophoresis, as do striated-muscle alpha-actinins. Its isoelectric points in the presence of urea were similar to the striated-muscle counterparts. Despite these similarities, distinctive amino acid sequences between smooth-muscle alpha-actinin and striated-muscle alpha-actinins were revealed by peptide mapping using limited proteolysis in SDS. Gizzard alpha-actinin was immunologically distinguished from striated-muscle alpha-actinins. Gizzard alpha-actinin formed bundles of gizzard F-actin as well as of skeletal-muscle F-actin, but could not form any cross-bridges between adjacent actin filaments under conditions where skeletal-muscle alpha-actinin could. Temperature-dependent competition between gizzard alpha-actinin and tropomyosin on binding to gizzard thin filaments was demonstrated by electron microscopic observations. Gizzard alpha-actinin promoted Mg2+-ATPase activity of reconstituted skeletal actomyosin, gizzard acto-skeletal myosin, and gizzard actomyosin. This promoting effect was depressed by the addition of gizzard tropomyosin. These findings imply that, despite structural differences between gizzard and striated-muscle alpha-actinin molecules, they function similarly in vitro, and that gizzard alpha-actinin can interact not only with smooth-muscle actin (gamma- and beta-actin) but also with skeletal-muscle actin (alpha-actin).  相似文献   

4.
We have applied correspondence analysis to electron micrographs of 2-D rafts of F-actin cross-linked with alpha-actinin on a lipid monolayer to investigate alpha-actinin:F-actin binding and cross-linking. More than 8000 actin crossover repeats, each with one to five alpha-actinin molecules bound, were selected, aligned, and grouped to produce class averages of alpha-actinin cross-links with approximately 9-fold improvement in the stochastic signal-to-noise ratio. Measurements and comparative molecular models show variation in the distance separating actin-binding domains and the angle of the alpha-actinin cross-links. Rafts of F-actin and alpha-actinin formed predominantly polar 2-D arrays of actin filaments, with occasional insertion of filaments of opposite polarity. Unique to this study are the numbers of alpha-actinin molecules bound to successive crossovers on the same actin filament. These "monofilament"-bound alpha-actinin molecules may reflect a new mode of interaction for alpha-actinin, particularly in protein-dense actin-membrane attachments in focal adhesions. These results suggest that alpha-actinin is not simply a rigid spacer between actin filaments, but rather a flexible cross-linking, scaffolding, and anchoring protein. We suggest these properties of alpha-actinin may contribute to tension sensing in actin bundles.  相似文献   

5.
We have used a positively charged lipid monolayer to form two-dimensional bundles of F-actin cross-linked by alpha-actinin to investigate the relative orientation of the actin filaments within them. This method prevents growth of the bundles perpendicular to the monolayer plane, thereby facilitating interpretation of the electron micrographs. Using alpha-actinin isoforms isolated from the three types of vertebrate muscle, i.e., cardiac, skeletal, and smooth, we have observed almost exclusively cross-linking between polar arrays of filaments, i.e., actin filaments with their plus ends oriented in the same direction. One type of bundle can be classified as an Archimedian spiral consisting of a single actin filament that spirals inward as the filament grows and the bundle is formed. These spirals have a consistent hand and grow to a limiting internal diameter of 0.4-0.7 microm, where the filaments appear to break and spiral formation ceases. These results, using isoforms usually characterized as cross-linkers of bipolar actin filament bundles, suggest that alpha-actinin is capable of cross-linking actin filaments in any orientation. Formation of specifically bipolar or polar filament arrays cross-linked by alpha-actinin may require additional factors that either determine the filament orientation or restrict the cross-linking capabilities of alpha-actinin.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2451-2461
Isolated cell preparations from chicken gizzard smooth muscle typically contain a mixture of cell fragments and whole cells. Both species are spontaneously permeable and may be preloaded with externally applied phalloidin and antibodies and then induced to contract with Mg ATP. Labeling with antibodies revealed that the cell fragments specifically lacked certain cytoskeletal proteins (vinculin, filamin) and were depleted to various degrees in others (desmin, alpha-actinin). The cell fragments showed a unique mode of supercontraction that involved the protrusion of actin filaments through the cell surface during the terminal phase of shortening. In the presence of dextran, to minimize protein loss, the supercontracted products were star-like in form, comprising long actin bundles radiating in all directions from a central core containing myosin, desmin, and alpha-actinin. It is concluded that supercontraction is facilitated by an effective uncoupling of the contractile apparatus from the cytoskeleton, due to partial degradation of the latter, which allows unhindered sliding of actin over myosin. Homogenization of the cell fragments before or after supercontraction produced linear bipolar dimer structures composed of two oppositely polarized bundles of actin flanking a central bundle of myosin filaments. Actin filaments were shown to extend the whole length of the bundles and their length averaged integral to 4.5 microns. Myosin filaments in the supercontracted dimers averaged 1.6 microns in length. The results, showing for the first time the high actin to myosin filament length ratio in smooth muscle are readily consistent with the slow speed of shortening of this tissue. Other implications of the results are also discussed.  相似文献   

7.
Dictyostelium discoideum alpha-actinin (D.d. alpha-actinin) is a calcium and pH-regulated actin-binding protein that can cross-link F-actin into a gel at a submicromolar free calcium concentration and a pH less than 7 [Fechheimer, et al., 1982]. We examined mixtures of actin and D.d. alpha-actinin at four pH and calcium concentrations that exhibited various degrees of gelation or solation. The macroscopic viscosities of these mixtures were measured by falling ball viscometry (FBV) and compared to the translational diffusion coefficients measured by gaussian spot and periodic-pattern fluorescence photobleaching recovery (FPR) of both the actin filaments and D.d. alpha-actinin. A homogeneous, macroscopic gel was not composed of a static actin network. Instead, the filament diffusion coefficient decreased to approximately 65% of the control value. If the D.d. alpha-actinin concentration was increased, the solution became inhomogeneous, consisting of domains of higher actin concentration. These domains were often composed of a static actin network. The mobility of D.d. alpha-actinin consisted of a major fraction that freely diffused and a minor fraction that appeared immobile under the conditions employed. This suggested that D.d. alpha-actinin binding to the actin filaments was static over the time course of measurement (approximately 5 sec). Under solation conditions, there was no apparent interaction of actin with D.d. alpha-actinin. These results demonstrate that 1) actin filaments need not be cross-linked into an immobile, static array in order to have macroscopic properties of a gel; 2) interpretation of the rheological properties of actin:alpha-actinin gels are complicated by spatial heterogeneity of the filament concentration and mobility; and 3) a fraction of D.d. alpha-actinin binds statically to actin in undisturbed gels. The implications of these results are discussed in relation to cytoplasmic structure and contractility.  相似文献   

8.
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker.  相似文献   

9.
T Fujimoto  K Ogawa 《Histochemistry》1988,88(3-6):525-532
The distribution of F-actin, alpha-actinin and filamin in smooth muscle cells of the chicken was examined by immunofluorescent and immunoelectron microscopy. Those from the gizzard, the femoral artery and the aortic arch were compared. F-Actin labeled by NBD-phallacidin was seen diffusely distributed in the sarcoplasm in the gizzard and the femoral artery, but in the aorta it was observed as streaks and spots, with unstained areas in between. Epon sections of the aortic arch showed that bundles of thin myofilaments run in various directions interspersed with areas mostly occupied by intermediate filaments. alpha-Actinin labelling occurred in dense plaques along the sarcolemma in all the muscles examined. While dense bodies in the sarcoplasm were common and labelled for alpha-actinin in the gizzard and the femoral artery, hardly any were seen in the aortic arch and little labelling for alpha-actinin was observed in the sarcoplasm. Filamin was concentrated along the periphery of dense bodies and plaques in the gizzard and the femoral artery, but it was seen diffusely in the sarcoplasm of the aortic muscle. After chemical skinning of the latter, filamin labelling persisted only in the F-actin bundles, and other areas became negative. The present results show that smooth muscle cells of the aortic arch contrast with those of the gizzard and even with those of the femoral artery in the distribution of F-actin, alpha-actinin and filamin. The mechanisms of contraction and/or stress maintenance in the aortic smooth muscle may be different from those in other smooth muscles.  相似文献   

10.
Supramolecular forms of actin from amoebae of Dictyostelium discoideum.   总被引:1,自引:0,他引:1  
Actin purified from amoebae of Dictyostelium discoideum polymerizes into filaments at 24 degrees upon addition of KCl, as judged by a change in optical density at 232 nm and by electron microscopy. The rate and extent of formation of this supramolecular assembly and the optimal KCl concentrations (0.1 M) for assembly are similar to those of striated muscle actin. The apparent equilibrium constant for the monomer-polymer transition is 1.3 muM for both Dictyostelium and muscle actin. Although assembly of highly purified Dictyostelium actin monomers into individual actin filaments resembles that of muscle actin, Dictyostelium actin but not muscle actin was observed to assemble into two-dimensional nets in 10 mM CaCl2. The Dictyostelium actin also forms filament bundles which are 0.1 mum in diameter and which assemble in the presence of 5 mM MgCl2. These bundles formed from partially purified Dictyostelium actin preparations but not from highly purified preparations, suggesting that their formation may depend on the presence of another component. These actin bundles reconstituted in vitro resemble the actin-containing bundles found in situ by microscopy in many non-muscle cells.  相似文献   

11.
Fascin is an actin crosslinking protein that organizes actin filaments into tightly packed bundles believed to mediate the formation of cellular protrusions and to provide mechanical support to stress fibers. Using quantitative rheological methods, we studied the evolution of the mechanical behavior of filamentous actin (F-actin) networks assembled in the presence of human fascin. The mechanical properties of F-actin/fascin networks were directly compared with those formed by alpha-actinin, a prototypical actin filament crosslinking/bundling protein. Gelation of F-actin networks in the presence of fascin (fascin to actin molar ratio >1:50) exhibits a non-monotonic behavior characterized by a burst of elasticity followed by a slow decline over time. Moreover, the rate of gelation shows a non-monotonic dependence on fascin concentration. In contrast, alpha-actinin increased the F-actin network elasticity and the rate of gelation monotonically. Time-resolved multiple-angle light scattering and confocal and electron microscopies suggest that this unique behavior is due to competition between fascin-mediated crosslinking and side-branching of actin filaments and bundles, on the one hand, and delayed actin assembly and enhanced network micro-heterogeneity, on the other hand. The behavior of F-actin/fascin solutions under oscillatory shear of different frequencies, which mimics the cell's response to forces applied at different rates, supports a key role for fascin-mediated F-actin side-branching. F-actin side-branching promotes the formation of interconnected networks, which completely inhibits the motion of actin filaments and bundles. Our results therefore show that despite sharing seemingly similar F-actin crosslinking/bundling activity, alpha-actinin and fascin display completely different mechanical behavior. When viewed in the context of recent microrheological measurements in living cells, these results provide the basis for understanding the synergy between multiple crosslinking proteins, and in particular the complementary mechanical roles of fascin and alpha-actinin in vivo.  相似文献   

12.
A protein similar to alpha-actinin has been isolated from unfertilized sea urchin eggs. This protein co-precipitated with actin from an egg extract as actin bundles. Its apparent molecular weight was estimated to be approximately 95,000 on an SDS gel: it co-migrated with skeletal-muscle alpha-actinin. This protein also co-eluted with skeletal muscle alpha-actinin from a gel filtration column giving a Stokes radius of 7.7 nm, and its amino acid composition was very similar to that of alpha-actinins. It reacted weakly but significantly with antibodies against chicken skeletal muscle alpha-actinin. We designated this protein as sea urchin egg alpha-actinin. The appearance of sea urchin egg alpha-actinin as revealed by electron microscopy using the low-angle rotary shadowing technique was also similar to that of skeletal muscle alpha-actinin. This protein was able to cross-link actin filaments side by side to form large bundles. The action of sea urchin egg alpha-actinin on the actin filaments was studied by viscometry at a low-shear rate. It gelled the F-actin solution at a molar ratio to actin of more than 1:20, at pH 6-7.5, and at Ca ion concentration less than 1 microM. The effect was abolished by the presence of tropomyosin. Distribution of this protein in the egg during fertilization and cleavage was investigated by means of microinjection of the rhodamine-labeled protein in the living eggs. This protein showed a uniform distribution in the cytoplasm in the unfertilized eggs. Upon fertilization, however, it was concentrated in the cell cortex, including the fertilization cone. At cleavage, it seemed to be concentrated in the cleavage furrow region.  相似文献   

13.
Three-dimensional reconstruction of a simple Z-band in fish muscle   总被引:2,自引:0,他引:2       下载免费PDF全文
The three-dimensional structure of the Z-band in fish white muscle has been investigated by electron microscopy. This Z-band is described as simple, since in longitudinal sections it has the appearance of a single zigzag pattern connecting the ends of actin filaments of opposite polarity from adjacent sarcomeres. The reconstruction shows two pairs of links, the Z-links, between one actin filament and the facing four actin filaments in the adjacent sarcomere. The members of each pair have nearly diametrically opposed origins. In relation to one actin filament, one pair of links appears to bind along the final 10 nm of the actin filament (proximal site) and the other pair binds along a region extending from 5 to 20 nm from the filament end (distal site). Between one pair and the other, there is a rotation of approximately 80 degrees round the filament axis. A Z-link with a proximal site at the end of one actin filament attaches at a distal site on the oppositely oriented actin filaments of the facing sarcomere and vice versa. The length of each Z-link is consistent with the length of an alpha-actinin molecule. An additional set of links located 10-15 nm from the center of the Z-band occurs between actin filaments of the same polarity. These polar links connect the actin filaments along the same direction on each side of the Z-band. The three-dimensional structure appears to have twofold screw symmetry about the central plane of the Z-band. Only approximate twofold rotational symmetry is observed in directions parallel to the actin filaments. Previous models of the Z-band in which four identical and rotationally symmetrical links emanate from the end of one actin filament and span across to the ends of four actin filaments in the adjacent sarcomere are therefore incorrect.  相似文献   

14.
Myosin X is a molecular motor that is adapted to select bundled actin filaments over single actin filaments for processive motility. Its unique form of motility suggests that myosin X's stepping mechanism takes advantage of the arrangement of actin filaments and the additional target binding sites found within a bundle. Here we use fluorescence imaging with one-nanometer accuracy to show that myosin X takes steps of ∼18 nm along a fascin-actin bundle. This step-size is well short of the 36-nm step-size observed in myosin V and myosin VI that corresponds to the actin pseudohelical repeat distance. Myosin X is able to walk along bundles with this step-size if it straddles two actin filaments, but would be quickly forced to spiral into the constrained interior of the bundle if it were to use only a single actin filament. We also demonstrate that myosin X takes many sideways steps as it walks along a bundle, suggesting that it can switch actin filament pairs within the bundle as it walks. Sideways steps to the left or the right occur on bundles with equal frequency, suggesting a degree of lateral flexibility such that the motor's working stroke does not bias it to the left or to the right. On single actin filaments, we find a broad mixture of 10-20-nm steps, which again falls short of the 36-nm actin repeat. Moreover, the motor leans to the right as it walks along single filaments, which may require myosin X to adopt strained configurations. As a control, we also tracked myosin V stepping along actin filaments and fascin-actin bundles. We find that myosin V follows a narrower path on both structures, walking primarily along one surface of an actin filament and following a single filament within a bundle while occasionally switching to neighboring filaments. Together, these results delineate some of the structural features of the motor and the track that allow myosin X to recognize actin filament bundles.  相似文献   

15.
LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE   总被引:11,自引:10,他引:1       下载免费PDF全文
Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.  相似文献   

16.
The amino acid sequences deduced from cDNA analyses revealed that human leucocyte L-plastin phosphorylated in response to interleukin 1, 2 closely resembles a chicken intestinal microvilli protein, fimbrin, that bundles actin filaments [de Arruda et al. (1990) J. Cell Biol. 111, 1069-1079]. In the present work, it was observed that unphosphorylated L-plastin isolated from human T cells bundled F-actin just as fimbrin does. L-Plastin acted on T cell beta-actin, but hardly acted on muscle alpha-actin or chicken gizzard gamma-actin, whereas fimbrin bundled muscle alpha-actin. Unlike fimbrin, L-plastin's actin-bundling action was strictly calcium-dependent: the bundles were formed at pCa 7, but not at pCa 6. Under suitable conditions, approximately one molecule of L-plastin bound to 8 molecules of actin monomer in the actin filament.  相似文献   

17.
During the spreading of a population of rat embryo cells, approximately 40% of the cells develop a strikingly regular network which precedes the formation of the straight actin filament bundles seen in the fully spread out cells. Immunofluorescence studies with antibodies specific for the skeletal muscle structural proteins actin, alpha-actinin, and tropomyosin indicate that this network is composed of foci containing actin and alpha-actinin, connected by tropomyosin-associated actin filaments. Actin filaments, having both tropomyosin and alpha-actinin associated with them, are also seen to extend from the vertices of this network to the edges of the cell. These results demonstrate a specific interaction of alpha-actinin and tropomyosin with actin filaments during the assembly and organization of the actin filament bundles of tissue culture cells. The three-dimensional network they form may be regarded as the structural precursor and the vertices of this network as the organization centers of the ultimately formed actin filament bundles of the fully spread out cells.  相似文献   

18.
Characterization of alpha-actinin from Acanthamoeba   总被引:5,自引:0,他引:5  
Characterization of a protein from Acanthamoeba that was originally called gelation protein [T.D. Pollard, J. Biol. Chem. 256:7666-7670, 1981] has shown that it resembles the actin filament cross-linking protein, alpha-actinin, found in other cells. It comprises about 1.5% of the total amoeba protein and can be purified by chromatography with a yield of 13%. The native protein has a molecular weight of 180,000 and consists of two polypeptides of 90,000 Da. The Stokes' radius is 8.5 nm, the intrinsic viscosity is 0.35 dl/dm, and the extinction coefficient at 280 mm is 1.8 X 10(5)M-1 X cm-1. Electron micrographs of shadowed specimens show that the molecule is a rod 48 nm long and 7 nm wide with globular domains at both ends and in the middle of the shaft. On gel electrophoresis in sodium dodecylsulfate the pure protein can run as bands with apparent molecular weights of 60,000, 90,000, 95,000, or 134,000 depending on the method of sample preparation. Rabbit antibodies to electrophoretically purified Acanthamoeba alpha-actinin polypeptides react with all of these electrophoretic variants in samples of purified protein and cell extracts. By indirect fluorescent antibody staining of fixed amoebas, alpha-actinin is distributed throughout the cytoplasmic matrix and concentrated in the hyaline cytoplasm of the cortex. The protein cross-links actin filaments in the presence and absence of Ca++. It inhibits slightly the time course of the spontaneous polymerization of actin monomers but has no effect on the critical concentration for actin polymerization even though it increases the apparent rate of elongation to a small extent. Like some other cross-linking proteins, amoeba alpha-actinin inhibits the actin-activated ATPase of muscle myosin subfragment-1. Although Acanthamoeba alpha-actinin resembles the alpha-actinin from other cells in shape and ability to cross-link actin filaments, antibodies to amoeba and smooth muscle alpha-actinins do not cross react and there are substantial differences in the amino acid compositions and molecular dimensions.  相似文献   

19.
We have previously established [Cortese and Frieden, J. Cell Biol. 107:1477-1487, 1988] that actin gels formed under shear are microheterogeneous. In this study, the effect of cross-linking (by chicken gizzard filamin), severing (by plasma gelsolin), and shear on actin microheterogeneity are investigated using fluorescence photobleaching recovery and video microscopy. We find that filamin and shear form microheterogeneous F-actin:gelsolin gels by different mechanisms. Bundling of actin:gelsolin filaments by filamin can be explained by an increase in the apparent length of the filaments due to interfilament binding, resulting in a decrease of the polymer number concentration at which filaments organize into anisotropic phases. Some intrafilament binding of filamin to actin filaments may also be present, and those filaments coated with filamin immobilize more slowly than actin under the same polymerization conditions. The length of F-actin/gelsolin filaments seems to be a major factor in controlling the extent of bundling relative to network formation. In contrast, the effect of shear on the microheterogeneity of actin:gelsolin filaments is consistent with our previous proposal that shear aligns actin filaments, allowing filament-filament interactions and phase formation to occur. Short filaments are unable to organize into branched actin networks, but they can create large aggregates under low shear. Longer actin filaments will exist as networks with variable levels of branching and are less sensitive to shear. The effect of the intensity of a shear field on the spatial distribution of actin may involve a progressively more random orientation of actin molecules and bundles. A regular pattern develops across the sample at low shear rates (0.04-1.39 s-1), and becomes very irregular at higher shear rates (greater than 10 s-1). We suggest here that actin-binding proteins and shear can control the transition between isotropic networks and anisotropic phases by their effect on apparent length and local filament concentration, and also that this transition can have substantial effects on the resistance of cells to mechanical stress.  相似文献   

20.
Actin has many diverse functions in the outer retina. To help elucidate its organization in this area, we have investigated the extent of its association with the actin cross-linking protein alpha-actinin. Ultrathin sections of chicken retina were double-immunolabelled with monospecific antibodies against actin and alpha-actinin. The highest relative amount of alpha-actinin to actin label was measured in the adherens junctions between the individual retinal pigmented epithelial (RPE) cells and between the photoreceptor and Mueller cells; in the photoreceptor myoid; and in the RPE basal microvilli. The lowest amount was in the Mueller cell microvilli, the RPE apical processes, and in the photoreceptor ellipsoid. It is likely that the areas containing the highest ratio of alpha-actinin to actin labelling are where the actin filaments are most highly cross-linked into bundles and linked to the plasma membrane by alpha-actinin. Actin filaments terminate in these areas, and, except for the myoid region, they are involved in cell-cell or cell-substrate adherens junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号