首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary In etiolated leaves of Phaseolus vulgaris L. cv. Prelude only low levels of NADH-nitrate oxidoreductase (E.C. 1.6.6.2; NAR) and reduced benzyl viologen-nitrite oxidoreductase (E.C. 1.6.6.4; NIR) could be detected, even in the presence of nitrate. When nitrate was available illumination of leaves of 10-day-old etiolated seedlings resulted in an induction of both NAR and NIR. In the absence of nitrate no induction of the enzymes took place, although greening of the leaves was normal. Chloramphenicol (CAP) and cycloheximide (CHI), applied at the beginning of the light period, inhibited the induction of both NAR and NIR. Administered after 24 h of illumination CHI still inhibited the induction of both enzymes whereas CAP was no longer inhibitory. The induction of NAR and NIR by nitrate in green leaves in light was inhibited by CHI but not by CAP. From these results it seems likely that both the enzymes NAR and NIR are synthesized on cytoplasmic ribosomes. Before the enzymes can be manufactured in the cytoplasm some chloroplast development is required.Abbreviations CAP chloramphenicol - CHI cycloheximide - G-6-P(-dh) glucose-6-phosphate (dehydrogenase) - NAR nitrate reductase - NIR nitrite reductase  相似文献   

2.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

3.
Induction of nitrate reductase EC 1.6.6.1 in etiolated barley (Hordeum vulgare L., var. Proctor) required continuous illumination and showed a lag period of about three hours. During the first 16 h of illumination the ratio NADH/NAD and NADPH/NADP, taken as a measure of internal oxidation reduction potential, declined. The inhibitor DCMU applied to whole leaves at concentrations shown to inhibit the reduction of cytochrome f by Photosystem 2 light did not inhibit the induction of nitrate reductase nor did it diminish the ratio of reduced to oxidised puridine nucleotides in the early hours of greening. It was concluded that light driven electron flow was not necessary for nitrate reductase induction. Chloramphenicol gave a slight inhibition of nitrate reductase induction. Laevulinic acid was added to greening barley leaves to inhibit tetrapyrrole pigment biosynthesis and plastid development. It strongly inhibited chlorophyll synthesis and nitrate reductase induction, with relatively little effect upon Photosystem 1 and 2 activities in isolated plastids. The activities of other inducible enzymes and control enzymes were little affected by laevulinic acid. Laevulinic acid also inhibited nitrate reductase induction by added nitrate in fully-greened illuminated plants grown in nitrate-free medium and so is unlikely to be acting through inhibition of plastid development. This inhibitor lowered the level of protohaem in whole leaves and plastids of greening barley and it is postulated that it may diminish the protohaem available for the assembly of a cytochrome b component of nitrate reductase.Abbreviations DCMU 3-(3:4-Dichlorophenyl)-1:1-dimethylurea - LA laevulinic acid  相似文献   

4.
The importance of light to the induction of nitrate reductase activity in barley (Hordeum vulgare L.) was studied. Activity in etiolated leaves in darkness stayed at a low endogenous level even while large amounts of nitrate were actively accumulated. Light was required for any increase in activity, though the requirement may be satisfied to a limited extent before nitrate is available. Nitrate reductase activity was induced in the dark in green leaves which had not previously had nitrate but were supplied nitrate at the beginning of the dark period. If the nitrate then made available was sufficient, nitrate reductase activity increased until the effect of the previous light treatment was exhausted. Activity then decreased even though nitrate uptake continued. Upon returning the leaves to light, enzymatic activity increased again, as expected. Nitrate uptake was eliminated as an experimental variable by giving dark-grown plants nitrate, then detaching the leaves for induction studies. Under these conditions light saturation occurred between 3600 and 7700 lux at exemplary periods of illumination. At intensities of 3600 lux and above, activity increased sharply after a 6-hour lag period. As light intensity was decreased below 3600 lux the lag period became longer. Thus, when sufficient nitrate was available, the extent of induction of nitrate reductase activity was regulated by light.  相似文献   

5.
Nitrate reductase activity, assayed either in vivo or in vitro was considerably higher in bean (Phaseolus vulgaris L.) leaves from 7-day-old light grown seedlings than those from dark grown, both in the absence as well as presence of nitrate. Cytochrome c reductase activity was however similar in both regimes, while peroxidase was lower in light than in dark. The light stimulated increase in nitrate reductase activity in leaf segments from dark grown seedlings was inhibited by cycloheximide, DNP, chloramphenicol, and sodium tungstate and was unaffected by lincomycin and DCMU. Under similar conditions, the increase in total chlorophyll was inhibited completely by cycloheximide and DNP, partially by chloramphenicol and lincomycin, and was unaffected by tungstate and DCMU. A supply of 1~5 mm reduced glutathione increased enzyme activity in the dark and also to some extent in light. The substrate induction of enzyme activity started after a lag of one hr in light or dark and continued for either 5 hr in the dark or 8 hr in light. Two proteinaceous inhibitors (Factors I and II) of nitrate reductase were isolated by ammonium sulfate precipitation and Sephadex gel filtration. The amount of Factor I was higher in the dark than in light. The amount and activity of Factor II was however, almost equal in light and dark. The inhibition of enzyme activity by these inhibitors increased with their concentration. It is proposed that light increases nitrate reductase activity by decreasing the amount of a nitrate reductase inhibitor.  相似文献   

6.
During light-induced greening of 10-dayold etiolated bean seedlings a strong increase is observed of ferredoxin (Fd) and of ferredoxin-NADP-oxidoreductase (FNR; E.C. 1.6.99.4) activity, both known to reside in chloroplasts. The production of Fd starts immediately upon illumination and proceeds almost linearly for at least the next 72 h. It is inhibited by chloramphenicol (CAP) but not by cycloheximide (CHI), beit that in the presence of the latter Fd synthesis was impaired after 48 h of illumination. We conclude that for the elaboration of functional Fd in greening chloroplasts protein synthesis on chloroplast ribosomes is required. The increase of FNR activity shows a lag of about 24 h and is blocked by both CAP and CHI. When CAP is applied at 24 h after the illumination started it has no effect. We suggest that the synthesis of FNR on cytoplasmic ribosomes requires prior synthesis of protein(s) on chloroplast ribosomes.The nature of possible interactions between chloroplasts and cytoplasm is discussed.Abbreviations CAP D-threo-chloramphenicol - CHI cycloheximide - DCIP dichlorophenol-indophenol - DEAE diethylaminoethyl - Fd Ferredoxin - FNR ferredoxin-NADP-oxidoreductase - NAR nitrate reductase - NIR nitrite reductase  相似文献   

7.
1. In rice seedlings synthesis of methyl viologen-nitrite reductase was stimulated by light, as was that of NADH-nitrate oxidoreductase (EC 1.6.6.1). A small residual effect of light on the synthesis of the enzymes persisted in the dark for a short time. 2. In etiolated seedlings exposed to light and nitrate, a lag period of 3h was necessary before enzyme synthesis commenced, whereas in green seedlings kept in the dark for 36h, synthesis of both the enzymes started as soon as light and nitrate were provided. 3. Experiments with cycloheximide suggested that fresh protein synthesis in light was necessary for formation of active enzymes. Mere activation by light of inactive enzymes or their precursors, was not involved. 4. In green seedlings synthesis of nitrite reductase was more sensitive to chloramphenicol than that of nitrate reductase. In chloramphenicol-treated etiolated seedlings, however, synthesis of both the enzymes was inhibited to the same extent on subsequent light-treatment. 5. A close correlation was observed between inhibition of the Hill reaction by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and simazin [2-chloro-4,6-bis(ethylamino)-s-triazine] (at high concentration) and the inhibition of enzyme synthesis. At lower concentrations, however, simazin stimulated nitrate reductase. 6. In a single leaf synthesis of enzymes was observed only in portions exposed to light, whereas little activity was present in the dark covered part. 7. CO(2) deprivation severely inhibited the synthesis of enzymes in the light. Sucrose could not reverse this effect. 8. In excised embryos cultured in synthetic media containing sucrose, light was also essential for enzyme formation. 9. It is suggested that redox changes taking place in the green tissues as a result of the Hill reaction create conditions favourable for the induced synthesis of nitrate reductase and nitrite reductase.  相似文献   

8.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

9.
The role of phytochrome in the induction of nitrate reductase of etiolated field peas (Pisum arvense L.) was examined. Terminal bud nitrate concentration increased in darkness, and the increase correlated with induction of nitrate reductase following brief exposure of intact plants to red, blue, far red, and white lights. Brief light exposure of intact plants stimulated nitrate uptake and induction of nitrate reductase by terminal buds subsequently excised and incubated on nitrate solution in darkness; exposure of excised buds in contact with nitrate led to less uptake but more induction. Nitrate and nitrate reductase activity both declined during incubation with water, irrespective of light treatment. Nitrate enrichment of intact terminal buds and uptake into excised buds and increases in nitrate reductase activity were all red/far red reversible. Dimethyl sulfoxide (1%, v/v) and sugars (sucrose 0.5%, glucose 1, w/v), although stimulating nitrate uptake into excised tissue in darkness, failed to enhance nitrate reductase activity over dark controls. Phytochrome may regulate nitrate reductase via both nitrate movement and a general mechanism such as enhancement of protein synthesis.  相似文献   

10.
Barley seedlings grown in the dark with 10 mm KNO(3) have low levels of nitrate reductase activity even though large amounts of No(3) (-) accumulate in the leaves. When the leaves are excised and transferred to the light, there is an increase in nitrate reductase activity both in the presence and absence of exogenous NO(3) (-). When the leaves are transferred to a glucose solution (0.05 m) but kept in the dark, induction of nitrate reductase activity occurs only when fresh NO(3) (-) is added to the system.In dark-grown leaves, there are small traces of NO(3) (-) in a "metabolic pool." Addition of glucose does not alter this distribution. Light, on the other hand, results in an appreciable accumulation of NO(3) (-) in the metabolic pool. There is a linear correlation between nitrate reductase activity and the size of the metabolic NO(3) (-) pool. Our results thus suggest that NO(3) (-) accumulates in a storage pool when seedlings are grown in continuous darkness. The transfer of this NO(3) (-) to an active metabolic pool is mediated by light but not by glucose. We believe that this transfer of NO(3) (-) leads to the induction of nitrate reductase. When NO(3) (-) is included in the medium, both light and glucose increase its incorporation into the metabolic pool. The results suggest two mechanisms for regulating the metabolic NO(3) (-) pool: (a) a transfer from the storage pool which requires light; and (b) a transfer from the external medium which requires either glucose or light.  相似文献   

11.
Karin Kemp  J. G. Chris Small 《Planta》1993,189(2):298-300
The nitrate level in seed embryonic axes of Erythrina caffra Thunb. which is capable of anaerobic germination, was about 2.5 times higher than in seed axes of Pisum sativum L. a species incapable of anaerobic germination. Nitrate levels in E. caffra seeds decreased during germination and this was not due to leaching. Both NADH- and NADPH-dependent nitrate reductase (NAR) activities increased during germination. The increase was prevented by cycloheximide. The activity of NADH-NAR (EC 1.6.6.1) was higher than that of NADPH-NAR (EC 1.6.6.3). Both NAR activities were higher in anoxia than in air during germination. The NAR activities in Pisum seeds were very much lower than in Erythrina seeds. Anoxia (N2 or argon) enhanced the induction of NAR by KNO3 in germinated E. caffra axes. The NADH- and NADPH-NAR activities were induced to equally high levels by KNO3 under anoxia. The enhancement was depressed by cycloheximide. It is concluded that nitrate and NAR activity may play a role in the anaerobic germination of E. caffra seeds.Abbreviation NAR nitrate reductase Financial support was obtained from the University of the Orange Free State and the Foundation for Research Development  相似文献   

12.
Light-enhanced nitrate reductase (NR) activity was 8 times greaterthan the dark control. Exogenous application of sucrose, glucoseand fructose increased the induction of NR in the light as wellas in the dark, whereas glycolate had no effect. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethyl urea] completely inhibited thedevelopment of NR in light. Sucrose, when added with DCMU, reversedthis inhibitory effect NR in vivo was more stable in light thanin darkness, the half-lives being 9.6 h and 6.4 h, respectively.The addition of sucrose did not change the half-life of NR ineither light or darkness. Ammonium, the end product of the inorganicnitrogen assimilatory pathway, stimulated the NR activity whereasamino acids decreased it. Key words: Spirodela oligorrhiza, nitrate reductase, ammonium, light  相似文献   

13.
The effect of a temperature close to the freezing point (chilling) on the nitrate reductase system of leaf discs of Cucumis sativus L. cv. Kleine Groene Scherpe was determined in the absence and presence of light. The capacity of leaf discs in the light (250 μE m−2s−1) at 20°C to increase in vivo and in vitro nitrate reductase activity, was unaffected by chilling pretreatment in the dark, but 4 h of chilling pretreatment in the light (250 μE m−2s−1) decreased the capacity to less than 50% of the unchilled control. The chilling inhibition of the capacity to increase nitrate reductase activity was of a photooxidative nature since it only occurred in the presence of light and oxygen. Plants grown at a low light intensity (65 μE m−2s−1) lost 95% of their capacity to increase nitrate reductase activity, while plants grown at 195 μE m−2s−1 retained 80% of their nitrate reducing capacity after 6 h chilling pretreatment in the 250 μE m−2s−1 light. Previously induced nitrate reductase activity was also affected by light during chilling. A lag phase of 7 h preceded a fast phase of decrease in activity. Both in vivo and in vitro activity decreased to 15% of the control value after 18 h of chilling in the light. It is concluded that the induction mechanism of nitrate reductase is primarily affected by photooxidation during chilling. The decrease in nitrate reductase activity is attributed to a decrease in the amount of activity enzyme.  相似文献   

14.
In excised wheat leaves, the activity of nitrate reductase was enhanced by a brief pulse of red light and this increase was reversed by far-red light irradiation. Even under continuous far-red light, nitrate reductase activity increased by 258% after 18 h. When leaves were kept in distilled water during exposure to red light and then transferred to potassium nitrate, there was no difference in endogenous nitrate concentration. The nitrate reductase activity was the same whether leaves were floated in potassium nitrate or in distilled water during irradiation. Partial to complete inhibition of enzyme activity was observed when leaves were incubated in actinomycin-D and cycloheximide respectively, following 4 h of red light irradiation.In vitro irradiation of extract had no significant effect on nitrate reductase activity  相似文献   

15.
The relation between leaf age and the induction of nitrate reductase activity by continuous and intermittent light was studied with barley seedlings (Hordeum vulgare L. cv. Club Mariout). In general, nitrate reductase activity declined as the period of growth in darkness was extended beyond 5 days. Maximum activity was found near the leaf tip while activity was lowest in the morphologically youngest tissue near the base of the lamina. Increased activity was observed after continuous illumination of dark-grown seedlings for 24 hours. The increase in activity in response to light was greatly reduced when the dark pretreatment period was extended beyond 8 days. The amount of nitrate reductase activity present in the different sections of the leaf was closely related to the amount of polyribosomes present. The pattern of chlorophyll accumulation closely parallelled that of increases in nitrate reductase activity. The initial lag in the induction of nitrate reductase activity was removed by a 10-minute light treatment 6 hours before placing dark-grown barley seedlings in light. The enzyme was also induced under flashing light with various dark intervals. These induction curves closely resembled those of chlorophyll accumulation under the same conditions. The development of photosynthetic CO2 fixation follows the same induction pattern in this system. Our results suggest that photosynthetic products may be required for the induction of significant levels of nitrate reductase activity in leaves of dark-grown seedlings, although other light effects may not be discounted.  相似文献   

16.
17.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

18.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus.  相似文献   

19.
Nitrate reductase activity and NR protein levels in various leaf tissues were drastically decreased (<3.5% of normal activity) either by keeping detached leaves in continuous darkness for up to 6 d (spinach), or by growing plants (pea, squash) hydroponically on ammonium as the sole N-source, or by germinating and growing etiolated seedlings in complete darkness (squash). The presence of nitrate reductase protein kinase (NRPK), nitrate reductase protein phosphatase (NRPP) and inhibitor protein (IP) was examined by measuring the ability of NR-free desalted extracts to inactivate (ATP-dependent) and reactivate (5-AMP/EDTA-dependent) added purified spinach NR in vitro. Extracts from low-NR plants (ammonium-grown pea and squash) were also prepared from leaves harvested at the end of a normal light or dark phase, or after treating leaves with anaerobiosis, uncouplers or mannose, conditions which usually activate NR in nitrategrown normal plants. Without exception, extracts from NR-deficient plant tissues were able to inactivate and reactivate purified spinach NR with normal velocity, irrespective of pretreatment or time of harvest. Considerable NRPK, NRPP and IP activities were also found in extracts from almost NR-free ripe fruits (cucumber and tomato). Activities were totally absent, however, in extracts from isolated spinach chloroplasts. The NRPK and IP fractions were partially purified with normal yields from NR-deficient squash or spinach leaves, following the purification protocol worked out for nitrate-grown spinach. The Ca2+/Mg2+-dependent kinase fraction from NR-deficient squash or spinach phosphorylated added purified spinach NR with -[32P]ATP and inactivated the enzyme after addition of IP. It is suggested (i) that the auxiliary proteins (NRPK, IP, NRPP) which modulate NR are rather species- or organ-unspecific, (ii) that they do not turn over as rapidly as does NR, (iii) that they are probably expressed independently of NR, and (iiii) that they are not covalently modulated, but under control of metabolic and/or physical signals which are removed by desalting.Abbreviations IP inhibitor protein - NR NADH-nitrate reductase - NRA nitrate reductase activity - NRPK nitrate reductase protein kinase - NRPP nitrate reductase protein phosphatase - PK protein kinase This work was supported by the Deutsche Forschungsgemeinschaft (SFB 251).  相似文献   

20.
Leaves of Pennisetum [Pennisetum glaucum (L) HHB 67] seedlings contained two isozymes of glutamine synthetase (GS, EC 6.3.1.2): cytosolic GS1 and chloroplastic GS2. Leaves of seedlings grown in light for seven days contained about twofold higher GS activity than etiolated leaves. In both light and dark grown seedlings, total GS, GS1 and GS2 activity declined with plant age with more pronounced effect in leaves of etiolated seedlings, and GS2 declined at a much faster rate than GS1. Exposure of etiolated seedlings to light markedly enhanced GS1 and GS2 activity. This increase in activity was not affected by cycloheximide, precluding light dependent de novo synthesis of the enzyme. Treatment of etiolated seedlings with photosynthetic inhibitor, dichlorophenyl dimethyl urea (DCMU) inhibited light dependent appearance of GS. Exogenous supply of sucrose to dark grown seedlings greatly increased the GS activity in dark. These results suggest that light-mediated stimulation in activity of GS in Pennisetum leaves is dependent on photosynthetic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号