首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
A 1761 base pairs long artificial gene coding for human serum albumin (HSA) has been prepared by a newly developed synthetic approach, resulting in the largest synthetic gene so far described. Oligonucleotides corresponding to only one strand of the HSA gene were prepared by chemical synthesis, while the complementary strand was obtained by a combination of enzymatic and cloning steps. 24 synthetic, 69-85 nucleotides long oligonucleotides covering the major part of the HSA gene (41-1761 nucleotides) were used as building blocks. Generally, four groups of 6-6 such oligonucleotides were successively cloned in pUC19 Escherichia coli vector to obtain about quarters of the gene as large fragments. Joining of these four fragments resulted in a cloned DNA coding for the 13-585 amino acid region of HSA, which was further supplemented with a double-stranded linker sequence coding for the amino terminal 12 amino acids. The completed structural gene composed of frequently used codons in the highly expressed yeast genes was then supplied with yeast regulatory sequences and the HSA expression cassette so obtained was inserted into an Escherichia coli-Saccharomyces cerevisiae shuttle vector. This vector was shown to direct the expression in Saccharomyces cerevisiae of correctly processed, mature HSA which was recognized by antiserum to HSA, and possessed the correct N-terminal amino acid sequence.  相似文献   

2.
Direct fusions have been constructed between each of subunits 8 and 9 from mitochondrial ATPase of Saccharomyces cerevisiae, proteins normally encoded inside mitochondria, and the cleavable N-terminal transit peptide from the nuclearly encoded precursor to subunit 9 of Neurospora crassa mitochondrial ATPase. The subunit 8 construct was imported efficiently into isolated yeast mitochondria and was processed at or very near the fusion point. When expressed in vivo from its artificial nuclear gene, this cytoplasmically synthesized form of subunit 8 restored the growth defects of aap 1 mutants unable to produce subunit 8 inside the mitochondria. The subunit 9 construct was, however, unable to be imported into isolated mitochondria and could not, following nuclear expression in vivo, complement growth defects in mitochondrial oli 1 mutants. This behaviour is contrasted with the previously demonstrated import competence of another yeast subunit 9 fusion, bearing the first five residues of mature N. crassa subunit 9 interposed between its own transit peptide and the yeast subunit 9 moiety.  相似文献   

3.
Although the control of mitochondrial translation in the yeast Saccharomyces cerevisiae has been studied extensively, the mechanism of termination remains obscure. Ten mutations isolated in a genetic screen for read-through of premature stop codons in mitochondrial genes were localized in the chromosomal gene encoding the mitochondrial release factor mRF1. The mrf1-13 and mrf1-780 mutant genes, in contrast to other alleles, caused a non-respiratory phenotype that correlated with decreased expression of mitochondrial genes as well as a reporter ARG8(m) gene inserted into mitochondrial DNA. The steady-state levels of several mitochondrially encoded proteins, but not their mRNAs, were dramatically decreased in mrf1-13 and mrf1-780 cells. Structural models of mRF1 were constructed, allowing localization of residues substituted in the mrf1 mutants and offering an insight into the possible mechanism by which these mutations change the mitochondrial translation termination fidelity. Inhibition of mitochondrial translation in mrf1-13 and mrf1-780 correlated with the three-dimensional localization of the mutated residues close to the PST motif presumably involved in the recognition of stop codons in mitochondrial mRNA.  相似文献   

4.
5.
Expression of calf prochymosin in Saccharomyces cerevisiae   总被引:18,自引:0,他引:18  
  相似文献   

6.
A mitochondrial gene (denoted aap1) in Saccharomyces cerevisiae has been characterized by nucleotide sequence analysis of a region of mtDNA between the oxi3 and oli2 genes. The reading frame of the aap1 gene specifies a hydrophobic polypeptide containing 48 amino acids. The functional nature of this reading frame was established by sequence analysis of a series of mit- mutants and revertants. Evidence is presented that the aap1 gene codes for a mitochondrially synthesized polypeptide associated with the mitochondrial ATPase complex. This polypeptide (denoted subunit 8) is a proteolipid whose size has been previously assumed to be 10 kilodaltons based on its mobility on SDS-polyacrylamide gels, but the sequence of the aap1 gene predicts a molecular weight of 5,815 for this protein.  相似文献   

7.
8.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

9.
A gene fusion consisting of 960 base pairs of 5'-flanking region of the yeast MF alpha 1 gene, 257 base pairs coding for alpha-factor prepro sequence, and a modified human IFN-alpha 1 gene was constructed. MAT alpha cells containing the chimeric gene synthesized and secreted active IFN-alpha 1 into the growth medium. The secreted interferon molecules contained the last 4 amino acids of alpha-factor prepro sequence and the amino acids encoded by the DNA modifications introduced at the beginning of IFN-alpha 1 gene. DNA sequences coding for these amino acids were removed by oligonucleotide-directed in vitro mutagenesis. Yeast cells transformed with expression plasmids containing the altered junction synthesized and secreted human IFN-alpha 1 with the natural NH2-terminus.  相似文献   

10.
H Edwards  P Schimmel 《Cell》1987,51(4):643-649
We have investigated the function of an E. coli aminoacyl-tRNA synthetase in S. cerevisiae strains that are respiration-deficient because of a mutation or a gene disruption in the nuclear encoded gene for the mitochondrial tyrosyl-tRNA synthetase. Although the yeast mitochondrial and E. coli tyrosine tRNAs differ significantly in sequence, expression of the E. coli tyrosyl-tRNA synthetase from a gene fusion restores respiration. The fusion gene contains a presumptive sequence for mitochondrial import from the mitochondrial tyrosyl-tRNA synthetase gene fused to the E. coli coding region. The fusion protein is incorporated into mitochondria. This incorporation and the rescue of the respiratory defect require the presumptive sequence for mitochondrial import. These experiments suggest a more limited definition of the identity of a tyrosine tRNA.  相似文献   

11.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

12.
The purification and the amino acid sequence of a proteolipid translated on ribosomes in yeast mitochondria is reported. This protein, which is a subunit of the ATP synthase, was purified by extraction with chloroform/methanol (2/1) and subsequent chromatography on phosphocellulose and reverse phase h.p.l.c. A mol. wt. of 5500 was estimated by chromatography on Bio-Gel P-30 in 80% formic acid. The complete amino acid sequence of this protein was determined by automated solid phase Edman degradation of the whole protein and of fragments obtained after cleavage with cyanogen bromide. The sequence analysis indicates a length of 48 amino acid residues. The calculated mol. wt. of 5870 corresponds to the value found by gel chromatography. This polypeptide contains three basic residues and no negatively charged side chain. The three basic residues are clustered at the C terminus. The primary structure of this protein is in full agreement with the predicted amino acid sequence of the putative polypeptide encoded by the mitochondrial aap1 gene recently discovered in Saccharomyces cerevisiae. Moreover, this protein shows 50% homology with the amino acid sequence of a putative polypeptide encoded by an unidentified reading frame also discovered near the mitochondrial ATPase subunit 6 gene in Aspergillus nidulans.  相似文献   

13.
The coding sequences of genes in the yeast Saccharomyces cerevisiae show a preference for 25 of the 61 possible coding triplets. The degree of this biased codon usage in each gene is positively correlated to its expression level. Highly expressed genes use these 25 major codons almost exclusively. As an experimental approach to studying biased codon usage and its possible role in modulating gene expression, systematic codon replacements were carried out in the highly expressed PGK1 gene. The expression of phosphoglycerate kinase (PGK) was studied both on a high-copy-number plasmid and as a single copy gene integrated into the chromosome. Replacing an increasing number (up to 39% of all codons) of major codons with synonymous minor ones at the 5' end of the coding sequence caused a dramatic decline of the expression level. The PGK protein levels dropped 10-fold. The steady-state mRNA levels also declined, but to a lesser extent (threefold). Our data indicate that this reduction in mRNA levels was due to destabilization caused by impaired translation elongation at the minor codons. By preventing translation of the PGK mRNAs by the introduction of a stop codon 3' and adjacent to the start codon, the steady-state mRNA levels decreased dramatically. We conclude that efficient mRNA translation is required for maintaining mRNA stability in S. cerevisiae. These findings have important implications for the study of the expression of heterologous genes in yeast cells.  相似文献   

14.
15.
16.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

17.
18.
19.
The mitochondrial tricarboxylic acid cycle enzyme malate dehydrogenase was purified from Saccharomyces cerevisiae, and an antibody to the purified enzyme was obtained in rabbits. Immunoscreening of a yeast genomic DNA library cloned into a lambda gt11 expression vector with anti-malate dehydrogenase immunoglobulin G resulted in identification of a lambda recombinant encoding an immunoreactive beta-galactosidase fusion protein. The yeast DNA portion of the coding region for the fusion protein translates into an amino acid sequence which is very similar to carboxy-terminal sequences of malate dehydrogenases from other organisms. In s. cerevisiae transformed with a multicopy plasmid carrying the complete malate dehydrogenase gene, the specific activity and immunoreactivity of the mitochondrial isozyme are increased by eightfold. Expression of both the chromosomal and plasmid-borne genes is repressed by growth on glucose. Disruption of the chromosomal malate dehydrogenase gene in haploid S. cerevisiae produces mutants unable to grow on acetate and impaired in growth on glycerol plus lactate as carbon sources.  相似文献   

20.
C Cullin  D Pompon 《Gene》1988,65(2):203-217
Mouse liver cytochrome P-450 P1 was produced in the yeast Saccharomyces cerevisiae transformed by various expression vectors. The relative efficiency of the phosphoglycerate kinase and GAL10-CYC1 promoters to direct the P-450 P1 mRNA synthesis was determined. The level of protein synthesis was found to be dependent on the amount of the 5'-noncoding sequence of the original cDNA removed during the construction. Yeast-synthesised P-450 P1 was found to be integrated into the microsomal membrane in a fully functional form, as judged by Western blotting, optical spectra and enzymatic activities. The amount of P-450 reached up to 0.6% of the microsomal protein level. A nucleotide sequence coding for a chimeric enzyme in which 40 N-terminal codons of P-450 P1 were replaced by 36 N-terminal codons of P-450 P3 was constructed and expressed in yeast. The resulting protein retained full P-450 P1 activity and was produced with a similar efficiency suggesting that the P-450 N-terminal sequence is not involved in structures critical for the substrate specificities of the P1 isoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号