首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.  相似文献   

2.
Cytometric analysis of the volume-distribution of macrocytic reticulocytes from 6-8 days acutely anemic sheep of both high and low potassium erythrocyte type revealed hyposmotically induced cell volume reduction in K-free NaCl but not in Na-methane sulfonate (CH3SO3Na) media. Furthermore N-ethylmaleimide, known to stimulate K:Cl efflux in these cells, and low extracellular pH caused cell shrinkage in isosmotic NaCl but not in CH3SO3Na. These data suggest that cell volume reduction, physiologically occurring during reticulocyte maturation, is a Cl-dependent process most likely involving electro-neutral K:Cl transport known to exist in reticulocytes of both sheep cation genotypes.  相似文献   

3.
Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.  相似文献   

4.
Passive K transport, as modified by N-ethyl maleimide (NEM), was studied in erythrocytes of the low-K (LK) phenotype of sheep. Brief (5- min) treatment with NEM at less than 0.5 mM caused inhibition of passive K influx; NEM at concentrations greater than 0.5 mM caused stimulation of K influx. NEM had similar effects on K efflux. The treatments with NEM did not affect cell volumes (passive K transport in LK cells is sensitive to changes in cell volume). The stimulation of K transport by high [NEM] was also not a consequence of an effect on the metabolic state of the cells. Passive K transport in LK cells is dependent on Cl (it is inhibited in Cl-free media; it may be K/Cl cotransport). NEM had no effect on K influx in Cl-free (NO3- substituted) media. Pretreatment of the cells with anti-L antiserum (L antigen is found on LK cells and not on HK cells) prevented stimulation of K influx by NEM, but did not prevent inhibition. Therefore, NEM modifies the Cl-dependent K transport pathway at two separate sites, a low-affinity site, at which it stimulates, and a high-affinity site, at which it inhibits. Anti-L antibody prevents NEM's action, but only at the low-affinity site.  相似文献   

5.
6.
Na- and Cl-dependent glycine transport was investigated in human red blood cells. The effects of the carrier substrates (Na, Cl, and glycine) on the glycine transport kinetics were studied with the goal of learning more about the mechanism of transport. The K1/2-gly was 100 microM and the Vmax-gly was 109 mumol/kg Hb.h. When cis Na was lowered (50 mM) the K1/2-gly increased and the Vmax-gly decreased, which was consistent with a preferred order of rapid equilibrium loading of glycine before Na. Na-dependent glycine influx as a function of Na concentration was sigmoidal, and direct measurement of glycine and Na uptake indicated a stoichiometry of 2 Na:1 glycine transported. The sigmoidal response of glycine influx to Na concentration was best fit by a model with ordered binding of Na, the first Na with a high K1/2 (greater than 250 mM), and the second Na with a low K1/2 (less than 10.3 mM). In the presence of low Cl (cis and trans 5 mM), the K1/2-gly increased and the Vmax-gly increased. The Cl dependence displayed Michaelis-Menten kinetics with a K1/2-Cl of 9.5 mM. At low Cl (5 mM Cl balanced with NO3), the glycine influx as a function of Na showed the same stoichiometry and Vmax-Na but a decreased affinity of the carrier for Na. These data suggested that Cl binds to the carrier before Na. Experiments comparing influx and efflux rates of transport using red blood cell ghosts indicated a functional asymmetry of the transporter. Under the same gradient conditions, Na- and Cl-dependent glycine transport functioned in both directions across the membrane but rates of efflux were 50% greater than rates of influx. In addition, the presence of trans substrates modified influx and efflux differently. Trans glycine largely inhibited glycine efflux in the absence or presence of trans Na; trans Na largely inhibited glycine influx and this inhibition was partially reversed when trans glycine was also present. A model for the binding of these substrates to the outward-facing carrier is presented.  相似文献   

7.
The effect of cell swelling, induced by a hyposmotic shock, on K(+)(Rb(+)) efflux from lactating rat mammary tissue explants has been studied. A hyposmotic challenge increased the fractional release of K(+)(Rb(+)) from mammary tissue in the absence and presence of the loop-diuretic bumetanide (100 microM). However, the volume-sensitive moiety of K(+)(Rb(+)) efflux was proportionately larger when bumetanide was present in the incubation medium. On the other hand, a hyposmotic shock appeared to reduce the bumetanide-sensitive component of K(+)(Rb(+)) efflux. The increase in K(+)(Rb(+)) efflux, induced by cell swelling, was dependent upon the extent of the hyposmotic challenge. In the presence of bumetanide, substituting Cl(-) with NO(3)(-) reduced the initial increase in volume-sensitive K(+)(Rb(+)) efflux. However, volume-sensitive K(+)(Rb(+)) release was prolonged in the presence of NO(3)(-). Volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants was inhibited by quinine. Cell swelling increased the intracellular concentration of Ca(2+) in a fashion which depended on the presence of extracellular Ca(2+). However, removing extracellular Ca(2+) did not inhibit volume-activated K(+)(Rb(+)) efflux from rat mammary tissue explants. The results are consistent with the presence of volume-activated K(+) channels in lactating rat mammary tissue. Volume-activated K(+) efflux may play a central role in mammary cell volume regulation.  相似文献   

8.
Mechanisms involved in cell volume regulation are important in SS, SC cells as they might be involved in determining the extent of sickling and the generation of dense cells and irreversibly sickled cells. We have studied in these cells the response to cell swelling of the K+,Cl- transporter. We found that Hb SS, SC and CC red cells have higher values of a ouabain-resistant, chloride-dependent and NEM-stimulated K+ efflux than AA red cells. In contrast, the Na+,K+,Cl- cotransport estimated from the bumetanide-sensitive component of K+ efflux was not significantly different in SS, SC and CC red cells. The (ouabain + bumetanide)-resistant K+ efflux from SS, SC and CC red cells was stimulated by cell swelling induced by reduction of the osmotic pressure (300 to 220 mosmol/l) and pH (8 to 7) of the flux media (140 mM NaCl). The Cl--dependent K+ efflux stimulated by osmotic swelling highly correlated with the NEM-stimulated component (r = 0.8, p less than 0.001, n = 22) and the acid-pH-induced swelling (r = 0.969, p less than 0.001, n = 22), indicating that it is driven by the K+,Cl- transporter.  相似文献   

9.
Cells isolated by hyaluronidase incubation from chicken small intestine were used to study the effects of anisosmotic buffers on K+ transport. Hypo-osmolarity (200 mosmol.l-1) reduced both the ouabain-sensitive and the ouabain-resistant, but bumetanide-sensitive, net K+ influx and increased the K+ efflux. The hypo-osmolarity induced K+ efflux was prevented by quinine and unaffected by bumetanide. These results suggest that Ca2+-activated K+ channels may be involved in regulatory volume decrease in chicken enterocytes. Hyperosmotic conditions (400 mosmol.l-1) increased the portion of net K+ influx mediated by the Na+/K+-ATPase and that mediated by the bumetanide-sensitive K+ transport system, and decreased the K+ efflux.  相似文献   

10.
In order to investigate whether Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the beta-cells, we tested the interaction between the effects of Na+ deficiency, furosemide and D-glucose on 86Rb+ fluxes in beta-cell-rich mouse pancreatic islets. Removal of extracellular Na+ slightly reduced the ouabain-resistant 86Rb+ influx and the specific effect of 1 mM furosemide on this influx was significantly smaller in Na(+)-deficient medium. The capacity of 20 mM D-glucose to reduce the ouabain-resistant 86Rb+ influx was not changed by removal of extracellular Na+. The 86Rb+ efflux from preloaded islets was rapidly and reversibly reduced by Na+ deficiency. Furosemide (1 mM) reduced the 86Rb+ efflux and the effect of the combination of Na+ deficiency and 1 mM furosemide was not stronger than the effect of furosemide alone. 22Na+ efflux was reduced by both ouabain and furosemide and the effects appeared to be additive. The data suggest that Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. This adds further support to the idea that beta-cells exhibit a Na+, K+, Cl- co-transport system. Since some of the furosemide effect on 86Rb+ efflux persisted in the Na(+)-deficient medium, it is likely that also loop diuretic-sensitive K+, Cl- co-transport exists in this cell type.  相似文献   

11.
Amino acids play a role as osmolytes during the regulatory volume decrease subsequent to hyposmotic swelling, but less is known about its role when swelling occurs in isosmotic conditions. In this work we examined the efflux of labelled GABA, taurine and glutamate (traced as D-aspartate) from the chick retina, after isosmotic swelling evoked by KCl-containing solutions, and compared its features to those in hyposmotic swelling. In both conditions, GABA and taurine efflux were more sensitive to swelling than glutamate, as assessed by the activation threshold and the amount released. The amino acid efflux in hyposmotic media was decreased by DIDS, tamoxifen and NPPB, agents acting as Cl channels blockers, which also inhibit the osmosensitive Cl efflux. The component associated with swelling in the KCl-stimulated efflux was assessed by the reduction observed when Cl is replaced by an impermeant anion, or by the influence of hyperosmotic media. GABA and taurine efflux exhibited a large swelling-dependent component, which was lower for D-aspartate. This component was markedly decreased by NPPB, but this was due to an effect of the blocker preventing swelling. These results suggest that the influx of Cl, acting as K counterion, which is responsible for cell swelling, occurs through a pathway sensitive to NPPB, similarly to that activated by hyposmolarity. This finding may be of interest in studies aiming at preventing the cell edema which occurs in a number of pathologies.  相似文献   

12.
Low K (LK) sheep red blood cells (SRBCs) serve as a model to study K-Cl cotransport which plays an important role in cellular dehydration in human erythrocytes homozygous for hemoglobin S. Cinchona bark derivatives, such as quinine (Q) and quinidine (QD), are effectively used in the treatment of malaria. In the present study, we investigated in LK SRBCs, the effect of various concentrations of Q and QD on Cl-dependent K efflux and Rb influx (K(Rb)-Cl flux), activated by either swelling in hyposmotic media, thiol alkylation with N-ethylmaleimide (NEM), or by cellular Mg (Mg i ) removal through A23187 in the presence of external chelators. K efflux or Rb influx were determined in Cl and NO3 medium and K(Rb)-Cl flux was defined as the Cl-dependent (Cl minus NO3) component. K(Rb)-Cl flux stimulated by all three interventions was inhibited by both Q and QD in a dose-dependent manner. Maximum inhibition of K(Rb)-Cl flux occurred at Q and QD concentrations ?1 mm. The inhibitory effect of Q was manifested in Cl, but not in NO3, whereas QD reduced K and Rb fluxes both in Cl and NO3 media. The mean 50% inhibitory concentration (IC50) of Q and QD to inhibit K(Rb)-Cl flux varied between 0.23 and 2.24 mm. From determinations of the percentages of inhibition of the different components of K and Rb fluxes, we found that SRBCs possess a Cl-dependent QD-sensitive and a Cl-dependent QD-insensitive K efflux and Rb influx. These two components vary in magnitude depending on the manipulation and directional flux, but in average they are about 50% of the total Cl-dependent flux. This study raises the possibility that, in SRBCs, the Cl-dependent K(Rb) fluxes are heterogeneous. This work was supported by a grant from the National Institutes of Health (NIH DK5RO1 37,160).  相似文献   

13.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

14.
The aim of this study was to characterize the erythrocyte cell membrane transport of trimethylamine oxide (TMAO) in the little skate, Raja erincea. Uptake of TMAO occurs by two processes, Na(+)-dependent and Na(+)-independent. 2,4 dinitrophenol (2,4 DNP), a known ATP synthesis inhibitor, inhibited TMAO uptake, suggesting the involvement of the Na(+)/K(+)-ATP pump in Na(+)-dependent TMAO transport. Na(+)-independent TMAO uptake was stimulated by cell swelling when erythrocytes were incubated in hypotonic elasmobranch incubation medium. Swelling-activated, Na(+)-independent TMAO uptake was inhibited by the anion transport inhibitors quinine and 4, 4'-diisthiocyanostilbene-2,2'-disulfonic acid (DIDS), two blockers of the swelling-activated osmolyte channel in skate erythrocytes. TMAO efflux was stimulated by hypotonic stress in the erythrocytes of the spiny dogfish, Squalus acanthias. DIDS also inhibited this efflux, indicating that TMAO is transported by the organic osmolyte channel in the erythrocytes of this elasmobranch as well. J. Exp. Zool. 284:605-609, 1999.  相似文献   

15.
Studies of unidirectional Cl-, Na+, and K+ effluxes were performed on isolated, internally dialyzed squid giant axons. The studies were designed to determine whether the coupled Na/K/Cl co-transporter previously identified as mediating influxes (Russell. 1983. Journal of General Physiology. 81:909-925) could also mediate the reverse fluxes (effluxes). We found that 10 microM bumetanide blocked 7-8 pmol/cm2 X s of Cl- efflux from axons containing ATP, Na+, and K+. However, if any one of these solutes was removed from the internal dialysis fluid, Cl- efflux was reduced by 7-8 pmol/cm2 X s and the remainder was insensitive to bumetanide. About 5 pmol/cm2 X s of Na+ efflux was inhibited by 10 microM bumetanide in the continuous presence of 10(-5) M ouabain and 10(-7) M tetrodotoxin if Cl-, K+, and ATP were all present in the internal dialysis fluid. However, the omission of Cl- or K+ or ATP reduced the Na+ efflux, leaving it bumetanide insensitive. K+ efflux had to be studied under voltage-clamp conditions with the membrane potential held at -90 mV because the dominant pathway for K+ efflux (the delayed rectifier) has a high degree of voltage sensitivity. Under this voltage-clamped condition, 1.8 pmol/cm2 X s of K+ efflux could be inhibited by 10 microM bumetanide. All of these results are consistent with a tightly coupled Na/K/Cl co-transporting efflux mechanism. Furthermore, the requirements for cis-side co-ions and intracellular ATP are exactly like those previously described for the coupled Na/K/Cl influx process. We propose that the same transporter mediates both influx and efflux, hence demonstrating "reversibility," a necessary property for an ion-gradient-driven transport process.  相似文献   

16.
Erythrocytes from teleosts to mammals, like man, possess a ouabain-resistant K flux component which is Cl-dependent and activated upon suspension of the cells into hyposmotic media. This volume-responsive K:Cl cotransporter may be synonymous with a Cl-dependent K pathway stimulated by chemical interventions such as SH group (thiol) alkylation or oxidation at cytoplasmic sites of the membrane. Based on a comparison of the response of the two activity expressions of probably the same molecule to ionic and metabolic perturbations a molecular model is proposed accommodating K:Cl flux activities under a variety of stimulatory and inhibitory influences. Physiologically, this pathway may be involved in the maturational cell volume reduction occurring between the stages of reticulocytes and the final erythrocytes as well as corresponsible for the expression of the low K steady state of certain animal red blood cells. The pathophysiological potential of this K:Cl transporter lies in the fact that, when activated, red blood cells dehydrate through K:Cl loss.  相似文献   

17.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

18.
Volume-sensitive K influx in human red cell ghosts   总被引:6,自引:3,他引:3       下载免费PDF全文
K influx into resealed human red cell ghosts increases when the ghosts are swollen. The influx demonstrates properties similar to volume-sensitive K fluxes present in other cells. The influx is, for the most part, insensitive to the nature of the major intracellular cation and therefore is not a K-K exchange. The influx is much greater when the major anion is Cl than when the major anion is NO3; Cl stimulates the flux and, at constant Cl, NO3 inhibits it. Increase in the influx rate is rapid when shrunken ghosts are swollen or when NO3 is replaced by Cl. The volume-sensitive K influx requires intracellular MgATP at low concentrations, and ATP cannot be replaced by nonhydrolyzable ATP analogues. The volume-sensitive influx is inhibited by Mg2+ and by high concentrations of vanadate, but is stimulated by low concentrations of vanadate. It is not modified by cAMP, the removal of Ca2+ by EGTA, substances that activate protein kinase C, or by inhibition of phosphatidylinositol kinase. The influx is inhibited by neomycin and by trifluoperazine.  相似文献   

19.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

20.
β-Adrenergic- and volume-dependent regulation of 22Na influx and 86Rb influx and efflux in erythrocytes of brown trout (Salmo trutta m. lacustris) were studied. Norepinephrine (10-6 mol·1-1) increased the rate of 22Na influx 10-to 20-fold via the activation of a Na/H exchanger (ethyl isopropyl amiloride inhibited component of 22Na influx). Unlike carp erythrocytes the activity of the Na, K-pump (ouabain-inhibited 86Rb influx) was only slightly (25–35%) increased by norepinephrine. The norepinephrine-induced increment of Na, K-pump activity was completely abolished by ethyl isopropyl amiloride thus indicating that this effect was mediated by Na/H exchanger-induced increase of intracellular Na+ concentration. Cell shrinkage in hyperosmotic media resulted in a several-fold activation of the Na/H exchanger. Cell swelling in hypotonic media increased both the rate of K, Cl-cotransport [((dihydroindenyl)oxy)alcanaic acidsensitive components of 86Rb influxe and efflux] and passive permeability (leakage) of erythrocyte membranes for Na+ and K+. No volume-dependent regulation of Na, K, 2Cl-cotransport (bumetanide-sensitive components of 86Rb fluxes) was found. It may be concluded that the regulation of monovalent cation transport in erythrocytes of fast-moving (carnivorous) brown trout differs essentially from that in slowly moving (herbivorous) carp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号