首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerases from bakers' yeast.   总被引:21,自引:0,他引:21  
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molecular weight (greater than 100,000) but are clearly separate species by the lack of immunological cross-reactivity. Analysis of associated enzyme activities and other reaction properties of yeast DNA polymerases provides additional evidence for distinguishing the two species. Enzyme I has no associated nuclease activity but does carry out pyrophosphate exchange and pyrophosphorolysis reactions, and has an associated 3'-exonuclease activity. Enzyme I does not degrade deoxynucleoside triphosphates and cannot utilize a mismatched template. Enzyme II does carry out a template-dependent deoxynucleoside triphosphate degradation reaction and can excise mismatched 3'-nucleotides from suitable template systems. Earlier studies have shown that both Enzyme I and Enzyme II are inhibited by N-ethylmaleimide. The yeast enzymes are not identical to any known eukaryotic or prokaryotic DNA polymerases. In general, Enzyme I appears to be most similar to eukaryotic DNA polymerase alpha and Ezyme II exhibits properties of prokaryotic DNA polymerases II and III.  相似文献   

2.
Herpes simplex virus (HSV) DNA polymerase was isolated on a large-scale from African green monkey kidney cells infected with HSV type 1 (HSV-1) strain Angelotti. After DNA-cellulose chromatography the enzyme showed a specific activity of 48,000 units/mg protein. Three major single polypeptides with molecular weights of 144,000, 74,000 and 29,000 were copurified with the enzyme activity at the DNA-cellulose ste. By its chromatographic behavior and by template studies, the HSV DNA polymerase activity was clearly distinguishable from cellular alpha, beta and gamma DNA polymerase activities. Two exonucleolytic activities were found in the DNA-cellulose enzyme preparation. The main exonucleolytic activity, which degraded both single-stranded and double-stranded DNA to deoxynucleoside 5'-monophosphates, was separated by subsequent velocity sedimentation. The remaining exonucleolytic activity was not separable from the HSV DNA polymerase by several chromatographic steps and by velocity sedimentation at high ionic strength. This novel exonuclease and HSV DNA polymerase were equally sensitive both to phosphonoacetic acid and Zn2+ ions, inhibitors of the viral polymerase. Similar to the 3'-to-5'-exonuclease of procaryotic DNA polymerases and mammalian DNA polymerase delta, the HSV-polymerase-associated exonuclease catalyzed the removal of 3'-terminal nucleotides from the primer/template as well as the template-dependent conversion of deoxynucleoside triphosphates to monophosphates.  相似文献   

3.
DNA polymerase from Escherichia coli (Pol I) and from avian myeloblastosis virus (AMV polymerase) were compared for the manner in which they catalyze the polymerization of deoxynucleotides upon a variety of synthetic and natural templates. It was found that the rates of nucleotide incorporation with different natural RNAs were similar. Both polymerases have an associated RNA endonuclease which hydrolyses RNA templates containing double-stranded regions. This activity depends on the presence of the complementary deoxynucleoside triphosphates, and/or polymerization. Both enzymes copy natural DNA, which has been sonicated and treated with E. coli exonuclease III, at the same rate. However, avian myeloblastosis virus DNA polymerase, which has no associated DNA exonuclease activity, is unable to copy double-stranded DNA and copies DNAase-treated DNA only 10% as well as Pol I. Pol I copied all the homopolymers investigated at a greater rate than AMV polymerase with the exception of poly(C) · oligo(dG). However, the initial rate of chain elongation, as measured by gel electrophoresis, was the same for the two polymerases, approximately 300 nucleotides incorporated per minute. Template saturation experiments show a stoichiometric relationship between template and enzyme at optimal rates of nucleotide incorporation which suggests that all enzyme molecules are potential catalysts. Enzyme saturation experiments indicate that not all enzyme molecules are “effectively” bound to a template. Fewer AMV polymerase than Pol I molecules are functionally bound to a particular template. From these data, it is concluded that the two polymerases elongate DNA chains in a similar way and that the manner in which the polymerases bind to a particular template accounts for the discrepancies found in their turnover numbers.  相似文献   

4.
5.
Three different DNA polymerases have been isolated from rat ascites hepatoma cells [1--3]. The molecular weight of a DNA polymerase (polymerase C) purified from the soluble fraction of the cells was estimated to be 142 000 by sedimentation on a sucrose gradient, while the molecular weights of two DNA polymerases (polymerase P-1 and P-2) purified from nuclear membrane-chromatin fraction were estimated to be 117 000 and 44 000, respectively, by the same method. Under certain conditions, the poly (dT) strand of poly[(dA)-(dT)] was copied well by the polymerases, especially by the nuclear polymerases. Poly (dC) was a good template for the high molecular weight DNA polymerases C and P-1, but poly(dT) and poly(dA) were not effective templates. By addition of complementary oligoribonucleotides, the single-stranded deoxypolymers were copied by the high molecular weight polymerases C and P-1. When single-stranded fd phage DNA was used as template, the polymerization reactions by the high molecular weight polymerases were stimulated by the concomitant synthesis of RNA. This indicates that the oligoribonucleotide acts as a primer in these reactions.  相似文献   

6.
Rat ascites hepatoma cell DNA polymerases (EC 2.7.7.7), especially low molecular weight polymerase, could incorporate a significant amount of single nucleotide into acid-soluble products in the absence of the other three deoxynucleoside triphosphates when activated DNA was used as a template. This relaxed requirement for deoxynucleotides was not observed when poly[d(A-T).d(T-A)] was used as a template. Nearest-neighbour base analyses of the products formed in the presence of a single deoxynuclesode triphosphate revealed that the reaction is not of a terminal transferase-type but a very limited repair synthesis in which one or a few triphosphates are incorporated at numerous 3'-hydroxyl ends.  相似文献   

7.
M J Modak 《Biochemistry》1976,15(16):3620-3626
Pyridoxal 5'-phosphate at concentrations greater than 0.5 mM inhibits polymerization of deoxynucleoside triphosphate catalyzed by a variety of DNA polymerases. The requirement for a phosphate as well as aldehyde moiety of pyridoxal phosphate for inhibition to occur is clearly shown by the fact that neither pyridoxal nor pyridoxamine phosphate are effective inhibitors. Since the addition of nonenzyme protein or increasing the amount of template primer exerted no protective effect, there appears to be specific affinity between pyridoxal phosphate and polymerase protein. The deoxynucleoside triphosphates, however, could reverse the inhibition. The binding of pyridoxal 5'-phosphate to enzyme appears to be mediated through classical Schiff base formation between the pyridoxal phosphate and the free amino group(s) present at the active site of the polymerase protein. Kinetic studies indicate that inhibition by pyridoxal phosphate is competitive with respect to substrate deoxynucleoside triphosphate(s).  相似文献   

8.
Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and 8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis caused by incorporation of the oxidized deoxynucleoside triphosphates.  相似文献   

9.
Fidelity of mammalian DNA replication and replicative DNA polymerases.   总被引:11,自引:0,他引:11  
Current models suggest that two or more DNA polymerases may be required for high-fidelity semiconservative DNA replication in eukaryotic cells. In the present study, we directly compare the fidelity of SV40 origin-dependent DNA replication in human cell extracts to the fidelity of mammalian DNA polymerases alpha, delta, and epsilon using lacZ alpha of M13mp2 as a reporter gene. Their fidelity, in decreasing order, is replication greater than or equal to pol epsilon greater than pol delta greater than pol alpha. DNA sequence analysis of mutants derived from extract reactions suggests that replication is accurate when considering single-base substitutions, single-base frameshifts, and larger deletions. The exonuclease-containing calf thymus DNA polymerase epsilon is also highly accurate. When high concentrations of deoxynucleoside triphosphates and deoxyguanosine monophosphate are included in the pol epsilon reaction, both base substitution and frameshift error rates increase. This response suggests that exonucleolytic proofreading contributes to the high base substitution and frameshift fidelity. Exonuclease-containing calf thymus DNA polymerase delta, which requires proliferating cell nuclear antigen for efficient synthesis, is significantly less accurate than pol epsilon. In contrast to pol epsilon, pol delta generates errors during synthesis at a relatively modest concentration of deoxynucleoside triphosphates (100 microM), and the error rate did not increase upon addition of adenosine monophosphate. Thus, we are as yet unable to demonstrate that exonucleolytic proofreading contributes to accuracy during synthesis by DNA polymerase delta. The four-subunit DNA polymerase alpha-primase complex from both HeLa cells and calf thymus is the least accurate replicative polymerase. Fidelity is similar whether the enzyme is assayed immediately after purification or after being stored frozen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Three DNA polymerase activities, named 1, 2 and 3 were purified from maize embryo axes and were compared in terms of ion requirements, optimal pH, temperature and KCl for activity, response to specific inhibitors and use of templates. All three enzymes require a divalent cation for activity, but main differences were observed in sensitivity to inhibitors and template usage: while DNA polymerases 1 and 2 were inhibited by N-ethyl maleimide and aphidicolin, inhibitors of replicative-type enzymes, DNA polymerase 3 was only marginally or not affected at all. In contrast, DNA polymerase 3 was highly inhibited by very low concentrations of ddTTP, an inhibitor of repair-type enzymes, and a 100-fold higher concentration of the drug was needed to inhibit DNA polymerases 1 and 2. Additionally, DNA polymerases 1 and 2 used equally or more efficiently the synthetic template polydA-oligodT, as compared to activated DNA, while polymerase 3 used it very poorly. Whereas DNA polymerases 1 and 2 shared properties of replicative-type enzymes, DNA polymerase 3 could be a repair-type enzyme. Moreover, a DNA primase activity copurified with the 8000-fold purified DNA polymerase 2, strenghtening the suggestion that polymerase 2 is a replicative enzyme, of the -type. This DNA primase activity was also partially characterized. The results are discussed in terms of relevant data about other plant DNA polymerases and primases reported in the literature.  相似文献   

11.
The presence of a nuclear DNA polymerase in mouse sperm from adult testes has been confirmed and the properties of this enzyme further investigated. This activity was shown to be greatly enhanced by treating the spermatozoa with methanol or ethanol before incubation in the reaction medium or by their addition in small amounts to this medium. It was protected against degradation by nuclear proteases by adding soybean trypsin inhibitor and was stimulated by ATP. It was found to be Mg2+ dependent (optimum concentration: 7.5 mM), DNA dependent, and all four deoxynucleoside triphosphates were needed for optimal reaction. The radioactive acid-precipitable product of polymerization was not eliminated by organic solvents, nor by pronase, ribonuclease or by nuclease S1; however, it was converted to a large extent to acid-soluble products by pancreatic deoxyribonuclease. Since it was only partially solubilized by Triton X-100, it therefore did not appear to be preferentially associated with the nuclear membranes. The activity recovered after incubation depended also on the pH (optimum at pH 8.3) and did not work well in a medium for DNA polymerase alpha. The temperature for maximum incorporation of nucleotides was found to be 32 degrees C and, under our conditions, the reaction was linear for 30 min. The DNA polymerase activity was inhibited by low and high concentrations of KCl. It was not lowered by N-ethylmaleimide or p-hydroxymercuribenzoate; urea slightly stimulated the reaction and this stimulation was reversed by subsequent treatment with N-ethylmaleimide. Actinomycin D (40 mug/ml), ethidium bromide (25--50 muM), netropsin (5--50 mug/ml), and spermidine (0.5--2.5 mM) lowered the polymerization of DNA precursors. The nuclear enzyme could shift from the endogenous template to activated exogenous calf thymus DNA, the resulting nuclear radioactivity being reduced. The endogenous DNP template ability was not increased by deoxyribonuclease activation according to the method of Aposhian and Kornberg (J. Biol. Chem. (1962) 237, 519--525) suggesting that the amount of DNA polymerase associated with chromatin was probably limiting the reaction. The DNA polymerase activity detected in mouse sperm nuclei has numerous properties of low molecular weight DNA polymerases (DNA polymerase beta) reported in several eukaryotic organisms.  相似文献   

12.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

13.
14.
Two high molecular weight DNA polymerases, which we have designated delta I and delta II, have been purified from calf thymus tissue. Using Bio Rex-70, DEAE-Sephadex A-25, and DNA affinity resin chromatography followed by sucrose gradient sedimentation, we purified DNA polymerase delta I 1400-fold to a specific activity of 10 000 nmol of nucleotide incorporated h-1 mg-1, and DNA polymerase delta II was purified 4100-fold to a final specific activity of 30 000 nmol of nucleotide incorporated h-1 mg-1. The native molecular weights of DNA polymerase delta I and DNA polymerase delta II are 240 000 and 290 000, respectively. Both enzymes have similarities to other purified delta-polymerases previously reported in their ability to degrade single-stranded DNA in a 3' to 5' direction, affinity for an AMP-hexane-agarose matrix, high activity on poly(dA) X oligo(dT) template, and relative resistance to the polymerase alpha inhibitors N2-(p-n-butylphenyl)dATP and N2-(p-n-butylphenyl)dGTP. These two forms of DNA polymerase delta also share several common features with alpha-type DNA polymerases. Both calf DNA polymerase delta I and DNA polymerase delta II are similar to calf DNA polymerase alpha in molecular weight, are inhibited by the alpha-polymerase inhibitors N-ethylmaleimide and aphidicolin, contain an active DNA-dependent RNA polymerase or primase activity, display a similar extent of processive DNA synthesis, and are stimulated by millimolar concentrations of ATP. We propose that calf DNA polymerase delta I, which also has a template specificity essentially identical with that of calf DNA polymerase alpha, could be an exonuclease-containing form of a DNA replicative enzyme.  相似文献   

15.
We have examined the DNA polymerases found in a rat nephroma cell line. Using DEAE- and DNA-cellulose chromatography, we have found two major cytoplasmic DNA polymerases and one major and three minor DNA polymerases from the nucleus. The enzymes were all purified, characterized, and distinguished from each other by several criteria. The enzyme require, for maximal activity, a natural or synthetic double-stranded DNA, four deoxynucleoside, triphosphates, and magnesium. They are inhibited to varying degrees by sodium pyrophosphate, ethidium bromide, and rho-chloromercuribenzoate.  相似文献   

16.
The enzymatic assay for deoxyribonucleoside triphosphates has been improved by using synthetic oligonucleotides of a carefully defined sequence as template primers for DNA polymerase. High backgrounds, which limit the sensitivity of the assay when calf thymus DNA or alternating copolymers are used as template primers, were eliminated with these oligonucleotide template primers. Sensitivity was further increased by designing the template primer to incorporate multiple labeled deoxyribonucleotides per limiting unlabeled deoxyribonucleotide. Each of several DNA polymerases exhibited unique reaction characteristics with the oligonucleotide template primers, which was attributed to the differing exonuclease activities associated with these various enzymes. Assay optimization therefore included matching the polymerase with the template primer to obtain the lowest background reaction and highest sensitivity. This modified assay is particularly well suited for keeping cell sample size to a minimum in experimental protocols which generate large numbers of data points or require careful timing of sampling. With this technique, we measured the levels of all four deoxyribonucleoside triphosphates in extracts from as few as 2 x 10(4) cultured cells.  相似文献   

17.
The mode of action by aphidicolin on DNA polymerase alpha from the nuclear fraction of sea-urchin blastulae was studied. The inhibition of DNA polymerase alpha by aphidicolin was uncompetive with activated DNA and competitive with the four deoxynucleoside triphosphates using activated DNA as a template-primer. For truncated (residual or limited) DNA synthesis with only three deoxynucleoside triphosphates, aphidicolin inhibited the residual synthesis more strongly in the absence of dCTP than in the absence of each of the other three deoxynucleoside triphosphates. The inhibition was reversed with excess dCTP but not with the other three deoxynucleoside triphosphates. That is, aphidicolin inhibited DNA polymerase alpha by competing with dCTP with a Ki value of 0.5 microgram/ml and by not competing with the other three deoxynucleoside triphosphates. dTMP incorporation with the activated DNA was more sensitive to aphidicolin than dGMP or dTMP incorporation with poly(dC). (dG)12-18 or poly(dA) . (dT)12-18. Similar results were obtained for DNA polymerase alpha (B form) from mouse myeloma MOPC 104E.  相似文献   

18.
DNA polymerase was purified 1000-fold from the cytoplasm of microplasmodia of the myxomycete Physarum polycephalum. The activity was found in two forms exhibiting molecular weights of 204000 and 116000 respectively. Both forms eluted together from DNA-cellulose and DEAE-Sephadex columns. The Stokes radii were 6.5 and 5.5 nm. The sedimentation coefficients were 7.6 and 5.2 S. The frictional ratios of 1.69 suggest a highly hydrated and/or an asymmetric structure of the molecule. The enzyme-catalyzed reaction was sensitive to N-ethylmaleimide (60% inhibition by 1 mM). Unlike DNA polymerase alpha from mammalian cells the Physarum enzyme was stimulated by 30 mM NaCl. Activated DNA was the preferred template. Poly(A) . (DT)12 was not accepted. The Km value for deoxynucleoside triphosphates was 3 micron, for activated DNA 50 microgram/ml and for Mg2+ at the optimum [k+] of 150 mM about 0.6 mM.  相似文献   

19.
Influence of DNA sequence on the nature of mispairing during DNA synthesis   总被引:3,自引:0,他引:3  
M D Lai  K L Beattie 《Biochemistry》1988,27(5):1722-1728
A series of synthetic oligonucleotide primers, annealed at various positions along the lacZ-alpha region of bacteriophage M13mp9 template, were elongated by purified DNA polymerases in the presence of only 3 of the 4 deoxynucleoside triphosphates to achieve misincorporation at a total of 49 different positions along the template. The newly synthesized strands (containing misincorporated bases) were isolated and sequenced to determine the identity of misincorporated deoxynucleoside monophosphates. The results indicate that the kind of mispairing that occurs during DNA synthesis is greatly influenced by the nucleotide sequence of the template. Transition-type base substitutions predominated overall, but at many template positions, transversion-type base substitutions occurred, most commonly via A.A mispairing. The results of parallel determinations made with Escherichia coli DNA polymerase I ("large fragment" form) and DNA polymerase of Maloney murine leukemia virus indicated that, overall, the identity of polymerase had only a small effect on the kind of misincorporation that occurred at different positions along the template. However, at certain template positions, the nature of mispairing during DNA synthesis was reproducibly affected by differing polymerase active-site environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号