首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

2.
Glutathione (GSH) is a major antioxidant in the brain and ammonia neurotoxicity is associated with oxidative stress. In this study, we show that intracerebral administration of ammonium chloride (“ammonia”, final concentration 5 mM) via a microdialysis probe, increases by 80% the glutathione content in cerebral cortical microdialysates, and tends to increase its content in striatal microdialysates. Treatment with ammonia in vitro dose-dependently increased the glutathione content in cultured cerebral cortical astrocytes and a C6 glioma cell line. Significant effects have been observed after 1 h (astrocytes) or 3 h (C6 cells) of exposure and were sustained up to 72 h of incubation. A gradual decrease of the GSH/GSSG ratio noted during 3 h (astrocytes) or 24 h (C6 cells) of exposure, was followed by an partial recovery after 24 h of incubation, the latter phase possibly reflecting increased availability of de novo synthesized glutathione. In our hands, cystine, the precursor for astrocytic glutathione synthesis, was transported to astrocytes almost exclusively by system XAG, while in C6 cells the transport engaged both system xc (60% of uptake) and XAG (40% of uptake). Ammonia in either cell type stimulated cystine uptake without changing the relative contribution of the uptake systems. The results are consistent with the concept of increased astrocytic glutathione synthesis as an adaptive response of the brain to ammonia challenge, and emphasize upregulation of cystine uptake as a factor contributing to this response.  相似文献   

3.
Uptake rates of L-alanine, L-serine and L-aspartate and trans-membrane electrical potentials (Δψ) were determined for a pH range in the external medium between 3.5 and 9.0. The proton electrochemical gradients (     ) were calculated from Δψ, pH of the medium, and an assumed cytoplasmic pH of 7.5. At external amino-acid concentrations of 0.1 mol m−3, where carrier-mediated uptake dominates total uptake, a linear correlation between uptake rates and     is obtained, which extrapolates to zero uptake at zero     . This corroborates the contention that neutral and acidic amino acids are taken up by Lemna gibba L. by H+-cotransport.  相似文献   

4.
Desiccation stress can determine the upper distribution limits and may enhance the uptake of nitrate and ammonium of eulittoral algal species. Upper shore species may exhibit greater stimulation of nitrate uptake following desiccation and achieve maximum uptake at higher desiccation levels. The objective of this study was to determine whether Porphyra species from different vertical elevations respond differently to the desiccation stress, in terms of growth and nitrate uptake. A eulittoral species ( Porphyra umbilicalis) and a sublittoral species ( P. amplissima ) were compared in the present study. Samples were exposed to air for 0, 30 min (40 ± 10% water loss) and 2 h (90 ± 5% water loss), after an initial 4 h light period every day. Desiccation was more stressful to the sublittoral species, Porphyra amplissima, than to the eulittoral species, P. umbilicalis . When tissues were exposed for 2 h daily, P. amplissima lost weight over a 24 h day, while the growth rate of P. umbilicalis dropped by only 30% compared with that of continuously submerged blades. Nitrate uptake rate of sublittoral P. amplissima was only 73% (40 ± 10% water loss) and 62% (90 ± 5% water loss) of that of continuously submerged tissue. Nitrate uptake rates of P. umbilicalis were not significantly affected by desiccation. These results suggest that species in the eulittoral zone, which have longer exposure times, have a higher time-use efficiency than the sublittoral species in terms of nitrate uptake. This indicates a possible correlation between nitrate uptake and observed vertical distribution patterns.  相似文献   

5.
6.
There is considerable controversy at present concerning the mechanisms responsible for the cellular uptake of anandamide. One particular issue concerns whether fatty acid-free bovine serum albumin should be used in the assays, it having been argued that such a presence effectively prevents the specific uptake of anandamide. In the present study, it has been demonstrated that in the presence of a low (0.1%, w/v) concentration of fatty acid-free bovine serum albumin, a temperature-dependent and saturable (K(m) approximately 1 microM) uptake of anandamide into P19 embryonic carcinoma cells can be demonstrated using an incubation time of 4 min. Under these conditions, the uptake of anandamide at 4 degrees C is low at a substrate concentration of 100 nM. The uptake at 37 degrees C was not significantly reduced following treatment of the cells with either methyl-beta-cyclodextrin (50 microM) or mevinolin (1 microM), but was reduced by the FAAH inhibitor URB597 (1 microM) and inhibited by the transport inhibitor cum FAAH substrate AM404 with an IC(50) value of 12 microM. When a 45 s incubation time was used, the uptake of anandamide was not saturable at 37 degrees C over the concentration range tested (0.1-1 microM). Analysis of the data at 37 degrees C obtained with 45 s, 4 min and 15 min incubation times revealed a very rapid (i.e. complete by 45 s) non-saturable component followed by a slower saturable (K(m) approximately 1 microM) component of the uptake. It is concluded that the presence of a low concentration of fatty acid-free bovine serum albumin at a suitable concentration reduces non-specific binding (and release) of anandamide to cell culture wells, greatly reduces the cellular accumulation seen at 4 degrees C, and allows the visualisation of both non-saturable and saturable components of the uptake to be seen at 37 degrees C.  相似文献   

7.
Background:  Nickel-dependent urease activity and nickel supply are essential for successful colonization of Helicobacter pylori in the acidic environment of the human stomach. A comparison of media effects on these two activities have never been carried out. Additionally to H. pylori we cultivated an Escherichia coli strain expressing the urease and the nickel transporter NixA of H. pylori on the same four media and measured in all cases urease and nickel uptake activity.
Aim:  To compare nickel uptake and urease activity on an inter- and intraspecies level.
Results:  In H. pylori nickel uptake (four to 200 times) and urease activities (400 to 30,000 times) were found to be much higher in comparison to the tested E. coli strain after growth on all media. These differences could not be explained by reduced protein amounts in the heterologous host E. coli . On which media the two bacteria extracted most of the nickel were organism-dependent: E. coli on Brucella Broth, H. pylori on Trypticase Soy Broth, and Minimal Media.
Conclusion:  H. pylori took nickel much more efficiently up than E. coli . The observed differences in urease activity are most likely due to additional protein components absent in the recombinant E. coli strain. The observed variety in nickel uptake and urease activities on the different media in the same organism depended on the intrinsic nickel content and chelating capacities of media components. Different culture conditions may lead to varying results; generalizations should be concluded only after excluding their media dependence.  相似文献   

8.
To assess the influence of water temperature on silver uptake, rainbow trout Oncorhynchus mykiss ( c . 50 g; held at 13° C) were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 4 and 16° C without previous temperature acclimation. To assess the influence of temperature on elimination of previously accumulated Ag, rainbow trout were exposed to 0·1 μM AgNO3 in ion‐poor water for 1 week at 12° C, then were randomly divided amongst two Ag‐free water containers, differing only in temperature (3 and 16° C), for 2 months. In the uptake study greater accumulation of Ag was seen in the gills, plasma and especially the livers and bile of 'warm' rainbow trout (16° C) compared to 'cold' rainbow trout (4° C), which can be explained by the higher metabolic rates of the warmer fish. In the depuration study there was no net elimination of Ag from the livers and bile but there was biphasic elimination of Ag from the gills and plasma of 'warm' and 'cold' fish, but with few differences between them. This indicated that temperature‐dependent processes were less important in Ag elimination than in Ag uptake. Toxicokinetic modelling of Ag uptake by livers indicated four‐fold greater uptake of Ag by 'warm' rainbow trout compared to 'cold' rainbow trout (one compartment uptake model). Elimination of previously accumulated Ag from the plasma was best fitted by a two compartment rate‐constant based model, with approximately half the plasma Ag load eliminated within 24 h, followed by slower elimination of Ag over 2 months.  相似文献   

9.
1. The relative contribution of roots and leaves to nutrient uptake by submerged stream macrophytes was tested in experiments where plants were grown in an outdoor flow-channel system. Water was supplied from a nutrient-rich stream with inorganic nitrogen and phosphorus concentrations typical of Danish streams.
2. Four submerged macrophyte species were tested, Elodea canadensis , Callitriche cophocarpa , Ranunculus aquatilis and Potamogeton crispus, and all species were able to satisfy their demand for mineral nutrients by leaf nutrient uptake alone. This was evident from manipulative experiments showing that removal of the roots had no negative impact on the relative growth rate of the plants. Further, the organic N and P concentrations of the plant tissue was constant with time for the de-rooted plants.
3. Enrichment of water and/or sediment had no effect on the relative growth rate of two species, E. canadensis and C. cophocarpa , indicating that in situ nutrient availability was sufficient to cover the needs for growth. Despite the lack of a response in growth rate, a reduced root/shoot biomass ratio was observed with nutrient enrichment of water and/or sediment, and an increased tissue-P concentration in response to open-water enrichment.
4. The open-water nutrient concentrations of the stream in which the experiments were performed are in the upper part of the range found for Danish farmland streams (the majority of Danish streams). Still, however, the negligible effect of nutrient enrichment on the growth of submerged macrophytes observed suggests that mineral nutrient availability might play a minor role in controlling macrophyte growth in most Danish streams.  相似文献   

10.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.  相似文献   

11.
The nutrient supply rates within the canopy of the economically important red algal species, Eucheuma serra J. Agardh were determined experimentally in a recirculating flow-chamber. A single individual was placed in the working section of the 2000 × 200 × 250 mm3 acrylic flow-chamber and subjected to unidirectional water velocities from 1.0 to 9.3 cm s−1. Rates of nutrient supply were determined using 9.7 mm diameter CaSO4 (gypsum) spheres that were attached to the thallus inside and outside of the canopy. The supply rates within the canopy were 56% less than outside of the canopy. Increases in internal and external water velocity asymptotically increased the nutrient supply rates regardless of location. A model was developed to examine how changes in ammonium and nitrate supply compared with the physiologically maximum uptake rates of these nutrients. The results suggest that when the ammonium concentration in the water was 20 µmol L−1 uptake rates were limited by the supply rate especially at velocities below 5 cm s−1, whereas in the case of 20 µmol L−1 of nitrate, the supply of nitrate was more than adequate to maximize nutrient uptake.  相似文献   

12.
Anaerobic/anoxic/aerobic systems inoculated without and with NaCl acclimated cultures, i.e., Models A and B, respectively, were fed with a synthetic wastewater at various salinity levels. After achieving a steady state, the systems were shocked with 70 g/l NaCl for four consecutive days before returning to pre-shock conditions. At the steady-state, the specific oxygen uptake rates (SOURs) increased with an increase of sodium chloride concentration (from 5.40 to 9.72 mg O2/g mixed liquor suspended solids (MLSS)-h at 0–30 g/l NaCl for Model A and from 6.84 to 17.64 mg O2/g MLSS-h at 5–30 g/l NaCl for Model B). In contrast, the specific ammonia uptake rate (SAUR) and specific nitrate uptake rate (SNUR) decreased with increasing chloride concentration (from 4.76 to 2.14 mg NH3–N/g MLSS-h and 2.50 to 1.22 NO3–N/g MLSS-h, for Model A, and from 3.84 to 2.71 mg NH3–N/g MLSS-hr and 2.54 to 1.82 mg NO3–N/g MLSS-hr, for Model B). During the shocked period, the SOUR in most scenarios increased whereas the SAUR and SNUR tended to decrease. The impact of the chloride shock on nitrifiers was more obvious than on denitrifiers; however, after a certain recovery period, the activities of both nitrifiers and denitrifiers in terms of SAUR and SNUR were approximately the same as those prior to shock.  相似文献   

13.
The fungus Rhizopus delemar produced extracellular and cellular acid phosphatase during the growth in starch-supplemented medium in the presence or absence of copper ions. The levels of both AP-ase activities were maximal at the end of exponential growth phase and were dependent on copper concentrations. Copper ions in the medium provoked slight decrease of specific AP-ase activities and significant increase of the values of secreted enzyme per gram dry cells. On the other hand, an increase of copper ions in the reaction mixture leads to considerable increase of the values of cellular enzyme activity. Total uptake of copper (II) was highest at the highest copper (II) concentration, when resting cells were used. Between 27 and 30% copper (II) was not removed by acid washing, suggested that this copper was bound intracellularly by mycelium. Determination of the Michaelis constant for the cellular AP-ase gave value of 0.325 mM. The pH optimum of the enzyme was determined to be in the range of 3.5–4.5 using p-nitrophenyl phosphate (pNPP) as a substrate. The data obtained indicated a possible participation of AP-ases in the processes of heavy metal resistance and heavy metal uptake of this fungus.  相似文献   

14.
This study investigated the transdermal uptake and subsequent tissue distribution of [3H]progesterone applied in a commercially available progesterone cream in a rat model. Concentrations of lipid- and water-soluble metabolites of [3H]progesterone were also measured in plasma, urine and selected tissues (uterus, liver, kidney, salivary gland) 3 h after its topical application. Female rats were ovariectomized and adrenalectomized to remove all endogenous progesterone, and 4 weeks later were anaesthetized and 150 mg Pro-Feme® cream (containing progesterone 3.2% w/w and 200 μCi [3H]progesterone) was applied to the abdominal skin. Six arterial blood samples were then obtained from a carotid cannula over the following 3 h, and urine and selected tissue samples were collected after the final blood sample. Plasma progesterone increased progressively until 90 min, then remained relatively stable. Plasma levels of [3H]progesterone were high by the 15-min sample and increased only slightly thereafter. Water-soluble metabolites were detectable in plasma at 15 min, whereas lipid-soluble metabolites became apparent only by 60 min then increased progressively to 180 min. The tissue:plasma concentration ratio for [3H]progesterone exceeded 1 in all tissues, most notably in uterus (8.4) and lung (9.6), whereas urinary [3H]progesterone levels were only half those in plasma. Concentrations of lipid- and water-soluble progesterone metabolites were most prevalent in liver and kidney, and both reached very high concentrations in urine. These results demonstrate that topically applied progesterone is rapidly absorbed transdermally and that its patterns of distribution and metabolism are comparable to those previously reported for intravascularly administered progesterone.  相似文献   

15.
The Caco-2 cell model was used to study the efficiency of absorption and endogenous excretion of zinc (Zn) regulated by dietary Zn concentration. Cells were seeded onto high pore-density membranes and maintained in medium supplemented with 10% FBS. After confluence, cells were treated with 5 or 25 μmol Zn/L for 7 d, and Zn uptake and transport were measured in both apical (AP) and basolateral (BL) directions by using 65Zn. Similar cells were labeled with 65Zn and the release of Zn to the AP and BL sides was measured. The AP uptake of Zn in cells exposed to 25 μmol Zn/L was slower (p < 0.05) than that in cells exposed to 5 μmol Zn/L. The AP to BL transport rate in the 25 μmol Zn/L group was only 40% (p < 0.05) of that in the 5 μM group. In contrast, the rate of BL Zn uptake was 4-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). The BL to AP transport rate was 2-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Basolateral uptake was 6 to 25 times greater (p < 0.05) than AP uptake for cells treated with 5 and 25 μmol Zn/L, respectively. The rate of Zn release was enhanced about 4-fold (p < 0.05) by 25 μmol Zn/L treatment. Release to the BL side was 10 times greater than to the AP side. Zn-induced metallothionein (MT), thought to down-regulate AP to BL Zn transport, was 4-fold higher (p < 0.001) in the 25 μmol Zn/L group than in the 5 μM group, but the rate of BL Zn release was higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Induced changes in transport rates by media Zn concentrations could involve the up- and/or down-regulation of Zn influx and efflux proteins such as the ZIP and ZnT families of Zn transporters.  相似文献   

16.
1. We used two separate approaches to estimate ambient ammonium cycling in the north and south branches of Kings Creek, a prairie stream. Chamber experiments were conducted to determine ammonium uptake and mineralization rates associated with epilithic biofilms and filamentous algae collected from the streams. A series of short-term whole-stream ammonium addition experiments were also conducted to estimate the rate of uptake at ambient stream concentrations, based on the relationship between ammonium concentrations and uptake rates.
2. Chamber experiments were scaled up to whole-stream levels, resulting in ambient gross uptake estimates of 0.08  μ g−2 s−1 for the north branch and 0.16  μ g−2 s−1 for the south branch. The substrata-specific estimates of mineralization were higher than uptake in both streams.
3. Substrata-specific measurements indicated that ammonium uptake is higher in riffle habitats than in pools habitats. The results of the short-term ammonium addition experiments support these findings.
4. Short-term ammonium addition experiments show that uptake rates saturate with increasing ammonium concentrations. The observed saturation of uptake rates is consistent with a Michaelis–Menten relationship.
5. Scaled estimates of uptake from the chamber experiments were similar to estimates of ambient ammonium uptake based on the whole-stream experiments, and were comparable with previous estimates of ammonium uptake and mineralization made by using stable isotope tracer methods in Kings Creek.  相似文献   

17.
18.
This is the first granulation study except Ferguson [Ferguson LN. Anaerobic codigestion of aircraft deicing fluid and microaerobic studies. M.S. Thesis. Milwaukee, WI, USA: Marquette University; 1999] to develop coupled granules by using a mixture of suspended anaerobic and aerobic cultures exposed to alternating cyclic anaerobic/microaerobic/aerobic conditions. Coupled granules with median sizes of 1.28–1.86 mm and settling velocities of 31–39 m/h were developed, which were comparable to those of both anaerobic and aerobic granules. Coupled granules displayed noteworthy specific methanogenic activity (SMA) and specific oxygen uptake rate (SOUR) as 14–42 mL CH4/g VSS h and 6–47 mg DO/g VSS h, respectively, indicating that they were composed of both anaerobic and aerobic cultures.  相似文献   

19.
Nitroxyl (HNO) is a molecule of significant interest due to its unique pharmacological properties, particularly within the cardiovascular system. A large portion of HNO biological effects can be attributed to its reactivity with protein thiols, where it can generate disulfide bonds. Evidence from studies in erythrocytes suggests that the activity of GLUT1 is enhanced by the formation of an internal disulfide bond. However, there are no reports that document the effects of HNO on glucose uptake. Therefore, we examined the acute effects of Angeli’s salt (AS), a HNO donor, on glucose uptake activity of GLUT1 in L929 fibroblast cells. We report that AS stimulates glucose uptake with a maximum effective concentration of 5.0 mM. An initial 7.2-fold increase occurs within 2 min, which decreases and plateaus to a 4.0-fold activation after 10 min. About 60% of the 4.0-fold activation recovers within 10 min, and 40% remains after an hour. The activation is blocked by the pretreatment of cells with thiol-reactive compounds, iodoacetamide (0.75 mM), cinnamaldehyde (2.0 mM), and phenylarsine oxide (10 μM). The effects of AS are not additive to the stimulatory effects of other acute activators of glucose uptake in L929 cells, such as azide (5 mM), berberine (50 μM), or glucose deprivation. These data suggest that GLUT1 is acutely activated in L929 cells by the formation of a disulfide bond, likely within GLUT1 itself.  相似文献   

20.
Scavenger receptors (ScRs) are a structurally unrelated family of receptors with the ability to bind modified low density lipoprotein (LDL) as well as a broad range of polyanionic ligands. CD68, whose expression is restricted to mononuclear phagocytes, is a unique ScR family member, owing to its lysosome associated membrane protein (LAMP)-like domain and predominant endosomal distribution. Knockout (ko) mice were generated to directly evaluate the role murine CD68 may play in oxidized LDL (Ox-LDL) uptake. However, CD68−/− macrophages took up Ox-LDL robustly. Likewise, no defects were observed in the ability of CD68−/− mononuclear phagocytes to take up or mount an effective innate response against a number of microbes. Curiously, CD68−/− mononuclear phagocytes exhibited a trend toward enhanced antigen presentation to CD4+ T-cells, raising the possibility that CD68 may function either to negatively regulate antigen uptake, loading, or major histocompatibility complex class II (MHC-II) trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号