首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chromatographic characteristics of urinary metabolites of theophylline were studied by two-dimensional thin-layer chromatography, high-performance liquid chromatography and gas chromatography—mass spectrometry. Quantitative data for the urinary metabolites of theophylline in asthmatic children are given. It was shown that 1,3-dimethyluric acid is the predominant excretory product. In addition, smaller amounts of 1-methyluric acid, 3-methylxanthine and unchanged theophylline were found.Excretory patterns after theophylline ingestion before and during the administration of allopurinol in asthma patients and in rats suggest the existence of three metabolic pathways of theophylline. The administration of this drug to a patient with xanthine oxidase deficiency resulted in the excretion of 1-methyluric acid in addition to 1,3-dimethyluric acid, 3-methylxanthine, 1-methylxanthine and unchanged theophylline. It was concluded that in man the oxidation of theophylline is not catalysed by xanthine oxidase.  相似文献   

2.
A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.  相似文献   

3.
A strain of Serratia marcescens showing the ability to degrade caffeine and other methylxanthines was isolated from soil under coffee cultivation. Growth was observed only with xanthines methylated at the 7 position (caffeine, 1,3,7-dimethylxanthine; paraxanthine, 1,7-dimethylxanthine; theobromine, 3,7-dimethylxanthine and 7-methylxanthine). Paraxanthine and theobromine were released in liquid medium when caffeine was used as the sole source of carbon and nitrogen. When paraxanthine or theobromine were used, 3-methylxanthine, 7-methylxanthine, and xanthine were detected in the liquid medium. Serratia marcescens did not grow with theophylline (1,3-dimethylxanthine), 1-methylxanthine, and 3-methylxanthine, and poor growth was observed with xanthine. Methyluric acid formation from methylxanthines was tested in cell-free extracts by measuring dehydrogenase reduction of tetrazolium salt in native-polyacrylamide gel electrophoresis gel. Activity was observed for all methylxanthines, even those with which no bacterial growth was observed. Our results suggest that in this strain of S. marcescens caffeine is degraded to theobromine (3,7-dimethylxanthine) and/or paraxanthine (1,7-dimethylxanthine), and subsequently to 7-methylxanthine and xanthine. Methyluric acid formation could not be confirmed. Correspondence to: Paulo Mazzafera.  相似文献   

4.
Urinary metabolic ratios of caffeine are used in humans to assess the enzymatic activities of cytochrome P450 isoenzyme 1A2 (CYP1A2), xanthine oxidase (XO) and for phenotyping individuals for the bimodal N-acetyltransferase 2 (NAT2), all of them involved in the activation or detoxification of various xenobiotic compounds. Most reported analytical procedures for the measurement of the urinary metabolites of caffeine include a liquid–liquid extraction of urine samples prior to their analysis by reversed-phase HPLC. At neutral to basic pH however, 5-acetylamino-6-formylamino-3-methyluracil (AFMU), a metabolite of caffeine, spontaneously decomposes to 5-acetylamino-6-amino-3-methyluracil (AAMU). Since AAMU is not extracted in most organic solvents, the extent of AFMU decomposition cannot be precisely assessed. Although the decomposition reaction can be minimized by immediate acidification of the urine, accurate results can only be obtained when both AAMU and AFMU are monitored, or alternatively, if AAMU is measured after complete transformation of AFMU into AAMU in basic conditions. We report a liquid chromatographic method for the simultaneous quantitative analysis of the five urinary metabolites of caffeine used for the CYP1A2, XO and NAT2 phenotyping studies: AAMU, AFMU, 1-methylxanthine, 1-methyluric acid and 1,7-dimethyluric acid. These metabolites are satisfactory separated from all other known caffeine metabolites as well as endogenous urinary constituents. Sample treatment does not require any liquid–liquid extraction procedure. Urine samples are diluted and centrifuged before being injected (10 μl) onto a YMC-Pack Polyamine II (250×4.6 mm) column. A step-wise gradient elution program is applied using acetonitrile–0.75% (v/v) formic acid: (91:9) at 0 min→(75:25) at 25 min→(65:35) at 35 min→(65:35) at 45 min, followed by a re-equilibration step to the initial solvent composition. The flow-rate is 1.0 ml/min and the separations are monitored by UV absorbance at 260 and 280 nm. The procedure described here represents a substantial improvement over previous methods: a single analysis and a minimal urine sample treatment enables the simultaneous quantitation of five caffeine metabolites, notably AFMU and AAMU, used for the determination of CYP450 1A2, XO and NAT2 enzyme activity. Importantly enough, phenotyping individuals for the bimodal NAT2 is made possible without the uncertainty associated with the deformylation of AFMU, which is likely to happen at all steps prior to the analysis, during sample storage and even in the bladder of the subjects.  相似文献   

5.
The reversed-phase mode of high-performance liquid chromatography was used to determine the intra- and inter-individual levels of UV-absorbing low-molecular-weight compounds in saliva. Many of the compounds known to occur in serum were also found in saliva; however, concentrations in saliva are lower. Both the intra- and inter-individual levels of these compounds vary significantly; in most cases, the inter-individual variance is 2–3 times the intra-individual variance.

Caffeine and its metabolites in saliva are also reported. A greater number of metabolites were found in the saliva of habitual coffee drinkers. After caffeine was administered orally, paraxanthine, theobromine, theophylline, 1-methylxanthine, and 1-methyluric acid were found in the saliva of an individual who did not drink coffee regularly. In this subject, the serum half-life for caffeine was 3.49 h and the saliva half-life was 3.27 h. The half-life of caffeine in an habitual coffee drinker who had refrained from caffeine products for four days was 4.39 h.  相似文献   


6.
Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.Caffeine (1,3,7-trimethylxanthine) and related methylxanthines are widely distributed in many plant species. Caffeine is also a major human dietary ingredient that can be found in common beverages and food products, such as coffee, tea, and chocolates. In pharmaceuticals, caffeine is used generally as a cardiac, neurological, and respiratory stimulant, as well as a diuretic (3). Hence, caffeine and related methylxanthines enter soil and water easily through decomposed plant materials and other means, such as effluents from coffee- and tea-processing facilities. Therefore, it is not surprising that microorganisms capable of degrading caffeine have been isolated from various natural environments, with or without enrichment procedures (3, 10). Bacteria use oxidative and N-demethylating pathways for catabolism of caffeine. Oxidation of caffeine by a Rhodococcus sp.-Klebsiella sp. mixed-culture consortium at the C-8 position to form 1,3,7-trimethyluric acid (TMU) has been reported (8). An 85-kDa, flavin-containing caffeine oxidase was purified from this consortium (9). Also, Mohapatra et al. (12) purified a 65-kDa caffeine oxidase from Alcaligenes sp. strain CF8. Cells of a caffeine-degrading Pseudomonas putida strain (ATCC 700097) isolated from domestic wastewater (13) showed a fourfold increase in a cytochrome P450 absorption spectrum signal compared to cells grown on glucose. Recently, we reported a novel non-NAD(P)+-dependent heterotrimeric caffeine dehydrogenase from Pseudomonas sp. strain CBB1 (20). This enzyme oxidized caffeine to TMU stoichiometrically and hydrolytically, without producing hydrogen peroxide. Further metabolism of TMU has not been elucidated.Several caffeine-degrading bacteria metabolize caffeine via the N-demethylating pathway and produce theobromine (3,7-dimethylxanthine) or paraxanthine (1,7-dimethylxanthine) as the initial product. Theophylline (1,3-dimethylxanthine) has not been reported to be a metabolite in bacterial degradation of caffeine. Subsequent N demethylation of theobromine or paraxanthine to xanthine is via 7-methyxanthine. Xanthine is further oxidized to uric acid by xanthine dehydrogenase/oxidase (3, 10). Although the identities of metabolites and the sequence of metabolite formation for caffeine N demethylation are well established, there is very little information on the number and nature of N-demethylases involved in this pathway.The lack of adequate information on the metabolism and enzymology of theophylline, caffeine, and related methylxanthines prompted us to investigate the degradation of these compounds in detail. We isolated a unique caffeine-degrading bacterium, P. putida CBB5, from soil via enrichment with caffeine as the sole source of carbon and nitrogen. Here we describe a detailed study of the metabolism of theophylline, caffeine, and related di- and monomethylxanthines by CBB5. Our results indicate that CBB5 initially N demethylated caffeine to produce theobromine (major product) and paraxanthine (minor product) before the pathways converged to 7-methylxanthine and xanthine. Surprisingly, CBB5 was also capable of utilizing theophylline as a sole carbon and nitrogen source. CBB5 N demethylated theophylline to 1-methylxanthine and 3-methylxanthine, which were further N demethylated to xanthine. Theophylline N-demethylase activity was detected in cell extracts prepared from theophylline-grown CBB5 cells. 1-Methylxanthine and 3-methylxanthine were detected as products of this NAD(P)H-dependent reaction. To our knowledge, this is the first report of a theophylline degradation pathway in bacteria and coexpression of distinct caffeine and theophylline degradation pathways.  相似文献   

7.
A simple reversed-phase high-performance liquid chromatography (HPLC) method for the simultaneous determination of caffeine and paraxanthine in human serum is described. Serum proteins are precipitated with perchloric acid and the resulting supernatant neutralized for direct injection onto an HPLC column. The method uses a phosphate–methanol mobile phase (85:15, v/v) at pH 4.9 with a flow-rate of 1.75 ml/min and quantitation is by UV absorbance at 274 nm. Elution times are approximately 18 min for caffeine and 8 min for paraxanthine. Theobromine and theophylline have elution times of 5.4 and 9.4 min and do not interfere in the assay. The intra-assay and between-assay means for precision and accuracy for both drugs are: 4.5% C.V. and 3.3% deviation. The sensitivity of the method is 50 ng/ml for each drug.  相似文献   

8.
We examined the purine alkaloid content and purine metabolism in cacao (Theobroma cacao L.) plant leaves at various ages: young small leaves (stage I), developing intermediate size leaves (stage II), fully developed leaves (stage III) from flush shoots, and aged leaves (stage IV) from 1-year-old shoots. The major purine alkaloid in stage I leaves was theobromine (4.5 μmol g–1 fresh weight), followed by caffeine (0.75 μmol g–1 fresh weight). More than 75% of purine alkaloids disappeared with subsequent leaf development (stages II–IV). In stage I leaves, 14C-labelled adenine, adenosine, guanine, guanosine, hypoxanthine and inosine were converted to salvage products (nucleotides and nucleic acids), to degradation products (ureides and CO2) and to purine alkaloids (3- and 7-methylxanthine, 7-methylxanthosine and theobromine). In contrast, 14C-labelled xanthine and xanthosine were not used for nucleotide synthesis. They were completely degraded, but nearly 20% of [8-14C]Xanthosine was converted in stage I leaves to purine alkaloids. These observations are consistent with the following biosynthetic pathways for theobromine: (a) AMP → IMP → 5′-xanthosine monophosphate → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (b) GMP → guanosine → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (c) xanthine → 3-methylxanthine → theobromine. Although no caffeine biosynthesis from 14C-labelled purine bases and nucleosides was observed during 18 h incubations, exogenously supplied [8-14C]Theobromine was converted to caffeine in young leaves. Conversion of theobromine to caffeine may, therefore, be slow in cacao leaves. No purine alkaloid synthesis was observed in the subsequent growth stages (stages II–IV). Significant degradation of purine alkaloids was found in leaves of stages II and III, in which [8-14C]Theobromine was degraded to CO2 via 3-methylxanthine, xanthine and allantoic acid. [8-14C]Caffeine was catabolised to CO2 via theophylline (1,3-dimethylxanthine) or theobromine.  相似文献   

9.
1. Extracts prepared from tea leaves with Polyclar AT (insoluble polyvinylpyrrolidine) contained two methyltransferase activities catalysing the transfer of methyl groups from S-adenosylmethionine to 7-methylxanthine, producing theobromine, and to theobromine, producing caffeine. 2. The methyltransferases exhibited the same pH optimum (8.4) and a similar pattern of effects by metal ions, thiol inhibitors and metal-chelating reagents, both for theobromine and caffeine synthesis. Mg2+, Mn2+ and Ca2+ slightly stimulated enzyme activity but they were not essential. Paraxanthine was shown to be most active among methylxanthines, as the methyl acceptor. However, the formation of paraxanthine from 1-methylxanthine was very low and that from 7-methylxanthine was nil, suggesting that the synthesis of caffeine from paraxanthine is of little importance in intact plants. Xanthine, xanthosine, XMP and hypoxanthine were all inactive as methyl acceptors, whereas [2(-14)C]xanthine and [8(-14)C]hypoxanthine were catabolized to allantoin and urea by tea-leaf extracts. The apparent Km values are as follows: 7-methylxanthine, 1.0 times 10(-14)M; theobromine, 1.0 times 10(-3)M; paraxanthine, 0.2 times 10(-3)M; S-adenosylmethionine, 0.25 times 10(-4)M (with each of the three substrates). 3. The results suggest that the pathway for caffeine biosynthesis is as follows: 7-methylxanthine leads to theobromine leads to caffeine. In contrast, it is suggested that theophylline is synthesized from 1-methylxanthine. The methyl groups of the purine ring of caffeine are all derived directly from the methyl group of S-adenosylmethionine. Little is known about the pathways leading to the formation of 7-methylxanthine. 4. A good correlation between caffeine synthesis and shoot formation or growth of tea seedlings was shown, suggesting that the methylating systems in caffeine synthesis are closely associated with purine nucleotide and nucleic acid metabolism in tea plants.  相似文献   

10.
1) A bacterium capable of growing aerobically with caffeine (1,3,7-trimethylxanthine) as sole source of carbon and nitrogen was isolated from soil. The morphological and physiological characteristics of the bacterium were examined. The organism was identified as a strain of Pseudomonas putida and is referred to as Pseudomonas putida C1. 15 additional caffeine-degrading bacteria were isolated, and all of them were also identified as Pseudomonas putida strains. The properties of the isolates are discussed in comparison with 6 Pseudomonas putida strains of the American Type Culture Collection. 2) The degradation of caffeine by Pseudomonas putida C1 was investigated; the following 14 metabolites were identified: 3,7-dimethylxanthine (theobromine), 1,7-dimethylxanthine, 7-methylxanthine, xanthine, 3,7-dimethyluric acid, 1,7-dimethyluric acid, 7-methyluric acid, uric acid, allantoin, allantoic acid, ureidoglycolic acid, glyoxylic acid, urea, and formaldehyde. Formaldehyde has been demonstrated to be the product of oxidative N-demethylation mediated by an inducible demethylase. A pathway of caffeine degradation is proposed.  相似文献   

11.
A high-performance liquid chromatographic procedure is reported for reproducibly and sensitively quantitating caffeine and its N-demethylated metabolite paraxanthine in micro-samples. A 5-μm reversed-phase radial compression column and 214-nm fixed wavelength ultraviolet detector were used to attain a sensitivity sufficient to quantitate these compounds at concentratios as low as 80 ng/ml using only 25 μl of sample. The assay is applicable to microliter samples of whole blood, serum, plasma, saliva, amniotic, cerebro-spinal and gastric fluids such as might be obtained in studies involving small animals or neonates. The utility of the assay is illustrated with caffeine and paraxanthine levels measured in several maternal and fetal fluids following constant-rate intravenous infusion of caffeine into a rabbit throughout pregnancy.  相似文献   

12.
The incorporation of radioactivity from L-[14CH3]-methionine into caffeine by coffee fruits was enhanced by additions of theobromine and paraxanthine but was reduced by additions of theophylline and caffeine. Cell-free extracts prepared from seedlings, partially ripe and unripe coffee fruits showed that only the unripe green fruits contained significant methyltransferase and 7-methyl-N9-nucleoside hydrolase activity. The cell-free extracts catalysed the transfer of methyl groups fromS-adenosyl-L-[14CH3]-methionine to 7-methylxanthine, and 7-methylxanthosine, producing theobromine and to theobromine producing caffeine. The two enzymic methylations exhibited a sharp pH max at 8.5 and a similar pattern of effects with metal chelators, thiol reagents and Mg2+ ions, which were slightly stimulating though not essential to enzyme activity. Paraxanthine (1,7-dimethylxanthine) was sh own to be the most active among methylxanthines as methyl acceptors; however its formation from 1-methylxanthine and 7-methylxanthine was not detectable, and biosynthesis from paraxanthine in the intact plant would therefore appear not to occur. The apparent Km values are as follows: 7-methylxanthine 0.2 mM, theobromine 0.2 mM, paraxanthine 0.07 mM and S-adenosyl-L-methionine with each substrate 0.01 mM. The results suggest the pathway for caffeine biosynthesis in Coffea arabica is: 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

13.
Rats were trained to discriminate methylxanthines from saline under a two-lever concurrent variable ratio schedule of reinforcement. One group was trained to discriminate between saline and 32 mg/kg caffeine. A second group was trained to discriminate between 56 mg/kg theophylline and saline. Rats reliably discriminated between saline and the training methylxanthine, displaying graded generalization curves across training-drug doses. Caffeine-trained rats demonstrated caffeine-appropriate responding when tested with theophylline, paraxanthine, and 3-methylxanthine. Theobromine failed to generalize to the caffeine cue at test doses up to 75 g/kg. In contrast to the caffeine group, rats trained to discriminate theophylline from saline were less sensitive (higher ED50) to the effects of caffeine and paraxanthine test doses. Only partial generalization to the theophylline cue occured at paraxanthine doses up to 100 mg/kg. Based upon these data, it is suggested that the underlying substrate(s) for the caffeine cue is in some respects different from the substrate(s) for the theophylline cue.  相似文献   

14.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

15.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

16.
In a study of purine alkaloid catabolism pathways in coffee,14C-labelled theobromine, caffeine, theophylline and xanthine were incubated with leaves ofCoffea arabica. Incorporation of label into14CO2 was determined and methanol-soluble metabolites were analysed by high-performance liquid chromatography-radiocounting. The data obtained demonstrate catabolism of caffeine theophylline 3-methylxanthine xanthine. Xanthine is degraded further by the conventional purine catabolism pathway to CO2 and NH3 via uric acid, allantoin and allantoic acid. The conversion of caffeine to theophylline is the rate-limiting step in purine alkaloid catabolism and provides a ready explanation for the high concentration of endogenous caffeine found inC. arabica leaves. Although theobromine is converted primarily to caffeine, a small portion of the theobromine pool appears to be degraded to xanthine by a caffeine-independent pathway. In addition to being broken down to CO2, via the purine catabolism pathway, xanthine is metabolised to 7-methylxanthine. Metabolism of [2-14C]xanthine byC. arabica leaves in the presence of 5 mM allopurinol results in very large increases in incorporation of radioactivity into 7-methylxanthine as degradation of the substrate via the purine catabolism pathway is blocked. The identity of 7-methylxanthine in these studies was confirmed by gas chromatography-mass spectrometry analysis.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting This work was supported by the British Council which provided H.A. with Japan-UK travel grants. F.M.G. was supported by a Biotechnology and Biological Sciences Research Council grant to A.C.  相似文献   

17.
T Nakatsuka  S Hanada  T Fujii 《Teratology》1983,28(2):243-247
A previous study demonstrated that caffeine strongly potentiated the teratogenic action of mitomycin C in mice. In the present study the effect of methylxanthines including caffeine, theophylline, theobromine (theobromine sodium salicylate), paraxanthine, and 1-methylxanthine was compared in order to analyze the structure-activity relationship. Jcl:ICR mice were injected IP with 3 mg/kg of mitomycin C, immediately followed by SC injection of each methylxanthine on day 11 of gestation. The doses of methylxanthines were calculated so that the mice received 50 mg/kg of caffeine or the equimolecular amount of the other methylxanthines. Fetuses were examined for external malformations on day 18 of gestation. Mitomycin C at 3 mg/kg and the methylxanthines at the doses used were not teratogenic. Combined administration of caffeine or theophylline with mitomycin C produced more than 80% of malformed fetuses. Although less effective than caffeine or theophylline, paraxanthine also significantly increased the incidence of malformed fetuses. Theobromine and 1-methylxanthine were virtually ineffective. From these findings, it is suggested that the methyl group at N-1 position of the xanthines is important for the enhancement but the N-1 methylation alone is ineffective unless accompanied with the substitution of the methyl moiety at the other position(s).  相似文献   

18.
An isocratic high-performance liquid chromatographic method with column switching and direct injection has been developed to determine ciprofloxacin in plasma and Mueller–Hinton broth. An on-line dilution of the sample was performed with a loading mobile phase consisting of 173 mM phosphoric acid. The analyte was retained on a LiChrocart 4-4 precolumn filled with a LiChrospher 100 RP18, 5 μm. An electric-actuated system with two six-port valves allowed a clean-up step with a mixture 20 mM phosphate buffer (pH 3.5)–methanol (97: 3, v/v) and the transfer of the analyte by a back-flush mode to a 150×4.6 mm I.D. column packed with a Kromasil C8 5 μm, using a mobile phase of 20 mM phosphate buffer (pH 3.5)–acetonitrile (85:15, v/v). Fluorescence detection allowed a quantification limit of 0.078 μg/ml with a 40-μl sample size. The method was evaluated to determine its usefulness in studying the pharmacokinetic/pharmacodynamic behaviour of ciprofloxacin in an in vitro model.  相似文献   

19.
The effects of a newly-developed ketolide antibiotic, telithromycin, on the metabolism of theophylline and the expression of hepatic cytochrome P450 (CYP) 1A2 and CYP3A2 were investigated in rats. Telithromycin at a high dose (100 mg/kg of body weight) was injected intraperitoneally once a day for 3 days. Twenty-four hours (day 4) after the final administration of telithromycin, theophylline (10 mg/kg) was administered intravenously. The presence of telithromycin significantly delayed the disappearance of theophylline from plasma. Parameters related to the pharmacokinetic interaction between theophylline and telithromycin were examined by noncompartmental methods. A significant decrease in the systemic clearance of theophylline was observed in the presence of telithromycin. Pretreatment with telithromycin significantly decreased the metabolic clearance of the major metabolites, 1-methyluric acid and 1,3-dimethyluric acid, with no change in the renal clearance of theophylline, suggesting that the decreased systemic clearance of theophylline by telithromycin is due to reduction of their metabolic clearance. Pretreatment with telithromycin significantly decreased the activity of 7-ethoxyresorufin O-deethylation and testosterone 6 beta-hydroxylation, suggesting that telithromycin decreases the activity of hepatic CYP1A2 and CYP3A2. Western blot analysis revealed that telithromycin significantly decreased the protein levels of CYP1A2 and CYP3A2 in the liver, which could explain the observed decreases in the systemic clearance of theophylline and metabolic clearance of 1-methyluric acid and 1,3-dimethyluric acid. The present study suggests that telithromycin at the dose used in this study alters the pharmacokinetics and metabolism of theophylline, due to reductions in the activity and expression of hepatic CYP1A2 and CYP3A2.  相似文献   

20.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号