首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of growth phase on the membrane-associated phospholipid biosynthetic enzymes CDP-diacylglycerol synthase, phosphatidylserine synthase, phosphatidylinositol synthase, and the phospholipid N-methyltransferases in wild-type Saccharomyces cerevisiae was examined. Maximum activities were found in the exponential phase of cells grown in complete synthetic medium. As cells entered the stationary phase of growth, the activities of the CDP-diacylglycerol synthase, phosphatidylserine synthase, and the phospholipid N-methyltransferases decreased 2.5- to 5-fold. The subunit levels of phosphatidylserine synthase and the cytoplasmic-associated enzyme inositol-1-phosphate synthase were not significantly affected by the growth phase. When grown in medium supplemented with inositol-choline, cells in the exponential phase of growth had reduced CDP-diacylglycerol synthase, phosphatidylserine synthase, and phospholipid N-methyltransferase activities, with repressed subunit levels of phosphatidylserine synthase and inositol-1-phosphate synthase compared with cells grown without inositol-choline. Enzyme activity levels remained reduced in the stationary phase of growth of cells supplemented with inositol-choline. The phosphatidylserine synthase and inositol-1-phosphate synthase subunit levels, however, were depressed. Phosphatidylinositol synthase (activity and subunit) was not affected by growth in medium supplemented with or without inositol-choline or the growth phase of the culture. The phospholipid composition of cells in the exponential and stationary phase of growth was also examined. The phosphatidylinositol to phosphatidylserine ratio doubled in stationary-phase cells. The phosphatidylcholine to phosphatidylethanolamine ratio was not significantly affected by the growth phase of cells.  相似文献   

2.
The effects of growth phase and carbon source on membrane-associated phosphatidylinositol kinase in cell extracts of Saccharomyces cerevisiae were examined. Phosphatidylinositol kinase activity increased 2- and 2.5-fold in glucose- and glycerol-grown cells, respectively, in the stationary phase as compared with the exponential phase of growth. The increase in phosphatidylinositol kinase activity in the stationary phase of growth correlated with an increase in the relative amounts of phosphatidylinositol 4-phosphate, the product of the reaction. The increase in phosphatidylinositol kinase activity was not due to the presence of water-soluble effector molecules in cell extracts as indicated by mixing experiments. Phosphatidylinositol kinase activity decreased in cell extracts of exponential-phase cells preincubated under phosphorylation conditions which favor cyclic AMP-dependent protein kinase activity. Phosphatidylinositol kinase activity was not affected in cell extracts of stationary-phase cells preincubated under phosphorylation conditions.  相似文献   

3.
Depending on the moment of cellobiose starvation, Clostridium cellulolyticum cells behave in different ways. Cells starved during the exponential phase of growth sporulate at 30%, whereas exhaustion of the carbon substrate at the beginning of growth does not provoke cell sporulation. Growth in the presence of excess cellobiose generates 3% spores. The response of C. cellulolyticum to carbon starvation involves changes in proteolytic activities; higher activities (20% protein degradation) corresponded to a higher level of sporulation; lower proteolysis (5%) was observed in cells starved during the beginning of exponential growth, when sporulation was not observed; with an excess of cellobiose, an intermediate value (10%), accompanied by a low level of sporulation, was observed in cells taken at the end of the exponential growth phase. The basal percentage of the protein breakdown in nonstarved culture was 4%. Cells lacking proteolytic activities failed to induce sporulation. High concentrations of cellobiose repressed proteolytic activities and sporulation. The onset of carbon starvation during the growth phase affected the survival response of C. cellulolyticum via the sporulation process and also via cell-cellulose interaction. Cells from the exponential growth phase were more adhesive to filter paper than cells from the stationary growth phase but less than cells from the late stationary growth phase.  相似文献   

4.
Deinococcus species exhibit an extraordinary ability to withstand ionizing radiation (IR). Most of the studies on radiation resistance have been carried out with exponential phase cells. The studies on radiation resistance of Deinococcus radiodurans R1 with respect to different phases of growth showed that late stationary phase cells of D. radiodurans R1 were fourfold more sensitive to IR and heat as compared with exponential or early stationary phase cells. The increased sensitivity of D. radiodurans R1 to IR in the late stationary phase was not due to a decrease in the intracellular Mn/Fe ratio or an increase in the level of oxidative protein damage. The resistance to IR was restored when late stationary phase cells were incubated for 15 min in fresh medium before irradiation, indicating that replenishment of exhausted nutrients restored the metabolic capability of the cells to repair DNA damage. These observations suggest that stress tolerance mechanisms in D. radiodurans R1 differ from established paradigms.  相似文献   

5.
Vibrio strain 14 supports phage alpha 3a growth in standing stationary phase cells but not in shaking (aerated) stationary phase cells. In exponential cells, protein was turned over at 1.8% h-1, and the rate was increased by starvation or inhibition of protein synthesis. In shaking stationary phase cells the rate of protein turnover was low (1.0% h-1) for proteins synthesised during growth but high (20% h-1) for recently synthesised proteins. In contrast recently synthesised proteins in standing stationary phase cells were stable over 60 min and proteins synthesised during growth were turned over at 2.9% h-1. ppGpp and pppGpp were detected in exponential cells, but were not detected in stationary phase cells.  相似文献   

6.
7.
8.
BACKGROUND AND AIMS: Cryopreservation is a practical method of preserving plant cell cultures and their genetic integrity. It has long been believed that cryopreservation of plant cell cultures is best performed with cells at the late lag or early exponential growth phase. At these stages the cells are small and non-vacuolated. This belief was based on studies using conventional slow prefreezing protocols and survival determined with fluorescein diacetate staining or 2,3,5-triphenyltetrazolium chloride assays. This classical issue was revisited here to determine the optimum growth phase for cryopreserving a bromegrass (Bromus inermis) suspension culture using more recently developed protocols and regrowth assays for determination of survival. METHODS: Cells at different growth phases were cryopreserved using three protocols: slow prefreezing, rapid prefreezing and vitrification. Stage-dependent trends in cell osmolarity, water content and tolerance to freezing, heat and salt stresses were also determined. In all cases survival was assayed by regrowth of cells following the treatments. KEY RESULTS: Slow prefreezing and rapid prefreezing protocols resulted in higher cell survival compared with the vitrification method. For all the protocols used, the best regrowth was obtained using cells in the late exponential or early stationary phase, whereas lowest survival was obtained for cells in the late lag or early exponential phase. Cells at the late exponential phase were characterized by high water content and high osmolarity and were most tolerant to freezing, heat and salt stresses, whereas cells at the early exponential phase, characterized by low water content and low osmolarity, were least tolerant. CONCLUSIONS: The results are contrary to the classical concept which utilizes cells in the late lag or early exponential growth phase for cryopreservation. The optimal growth phase for cryopreservation may depend upon the species or cell culture being cryopreserved and requires re-investigation for each cell culture. Stage-dependent survival following cryopreservation was proportionally correlated with the levels of abiotic stress tolerance in bromegrass cells.  相似文献   

9.
Summary During the stationary growth phase, the phospholipids of Thiobacillus neapolitanus consisted of phosphatidyl glycerol (PG), diphosphatidyl glycerol (DPG), phosphatidyl-N-monomethylethanolamine (PME) and phosphatidyl ethanolamine (PE) in increasing amounts. In general, the phospholipids increased to a maximum concentration during the stationary phase and then decreased in concentration. Individually, PG and PE increased to a maximum in late lag or early exponential phase and then decreased in concentration. DPG and PME increased during the transition between the exponential and the stationary phase and reached a maximum concentration in the stationary phase. In older cultures, a quantitative interconversion between PG and DPG and PE and PME was observed. A lyso-phospholipid compound also appeared in the late stationary phase.The phospholipid composition of the culture supernatant fluid was essentially similar to that of the cells at all stages of growth. No excessive secretion of these products into the medium was observed at any growth stage of the culture.Abbreviations used PG Phosphatidyl glycerol - DPG Diphosphatidyl glycerol - PME Phosphatidyl-N-monomethylethanolamine - PE Phosphatidyl ethanolamine - GPGPG Glycerophosphoryl glycerophosphoryl glycerol - GPG Glycerophosphoryl glycerol - GPE Glycerophosphoryl ethanolamine - GPME Glycerophosphoryl-N-monomethylethanolamine  相似文献   

10.
Patterns of newly synthesized proteins of Vero cells in different growth states were obtained using two-dimensional gel electrophoresis. The 240 most prevalent peptide spots were then compared. Cells in exponential growth and in the stationary phase were found to have patterns of peptide spots characteristic of their state of growth. The transition between these patterns is progressive, and the cells acquire a pattern characteristic of quiescent cells by the late exponential phase. These observations suggest that a series of modulations in gene expression occurs during the transition of growth states in animal cells that leads to the specific appearance or disappearance of certain cellular peptides.  相似文献   

11.
12.
When chloramphenicol was added to a culture of Bacillus subtilis in early exponential growth, microscopic observation of cells stained by 4',6-diamidino-2-phenylindole showed nucleoids that had changed in appearance from irregular spheres and dumbbells to large, brightly stained spheres and ovals. In contrast, the addition of chloramphenicol to cultures in mid- and late exponential growth showed cells with elongated nucleoids whose frequency and length increased as the culture approached stationary phase. The kinetics of nucleoid elongation after the addition of chloramphenicol to exponential-phase cultures was complex. Immediately after treatment, the rate of nucleoid elongation was very rapid. The nucleoid then elongated steadily for about 4 min, after which the rate of elongation decreased considerably. Nucleoids of cells treated with 6-(p-hydroxyphenylazo)-uracil (an inhibitor of DNA synthesis) exhibited the immediate rapid elongation upon chloramphenicol treatment but not the subsequent changes. These observations suggest that axial filament formation during stationary phase (stage I of sporulation) in the absence of chloramphenicol results from changes in nucleoid structure that are initiated earlier, during exponential growth.  相似文献   

13.
T. Lanaras  G. A. Codd 《Planta》1982,154(3):284-288
Ribulose 1,5-bisphosphate (RuBP) carboxylase is present in the cytoplasm and carboxysomes (polyhedral bodies) of the cyanobacterium Chlorogloeopsis fritschii. In vitro enzyme activities have been measured throughout photoautotrophic batch culture, together with RuBP carboxylase protein concentrations, determined by rocket immunoelectrophoresis. Enzyme activities and protein levels in the cytoplasmic and carboxysomal fractions varied in an apparently inverse manner during growth. The RuBP carboxylase activities per unit enzyme protein were maximal in late lag phase/early exponential phase for both cellular enzyme pools. Both rates per unit enzyme protein declined during exponential phase, cytoplasmic enzyme activity remaining consistently higher than that of the carboxysomal enzyme. Activities per unit cytoplasmic and carboxysomal enzyme protein showed very low, similar rates in late stationary phase and death phase. Dialysis experiments indicated that such changes were not due to interference in activity assays by soluble endogenous effectors. Major shifts in the subcellular distribution of RuBP carboxylase protein were found versus culture age, enzyme protein levels being predominantly carboxysomal in lag phase, mainly soluble in exponential phase and then mainly carboxysomal again in stationary/death phase. The data are discussed in terms of carboxysome function and the question of control of RuBP carboxylase synthesis in cyanobacteria.Abbreviations RuBP D-ribulose 1,5-bisphosphate - LTIB low Tris isolation buffer - HTIB high Tris isolation buffer - RIE rocket immunoelectrophoresis  相似文献   

14.
The behavior of lag and exponential growth phase L5178Y mouse leukemic cells under normal and prolonged lag phase conditions with respect to partition in aqueous dextran — polyethylene glycol polymer systems has been studied. ‘Backculture’ of early stationary cells into fresh growth medium is accompanied by a decrease in partition ratio from 0.52 to 0.11. The partition ratio remains depressed for a time considerably longer than the duration of lag phase but rises rapidly and returns to its former value as the cells reach late exponential/early stationary phase. If lag phase is prolonged, the time for which the partition ratio remains depressed is also prolonged. In the exponential phase following a prolonged lag phase, the partition ratio rises at a rate slower than during a normal exponential phase and does not reach the same magnitude for the same position in the cycle. Net negative surface charge as measured by particle microelectrophoresis does not change appreciably throughout the growth cycle. The results suggest that the sequence of events at the cell surface on a populational basis which contribute to the partitioning behavior is possibly predetermined or programmed at the time of transfer into fresh medium. The results further substantiate the technique of aqueous polymer partitioning as being the most sensitive method available for monitoring subtle changes in plasma membrane properties during the cell growth cycle.  相似文献   

15.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

16.
Microbes engage in cooperative behaviours by producing and secreting public goods, the benefits of which are shared among cells, and are therefore susceptible to exploitation by nonproducing cheats. In nature, bacteria are not typically colonizing sterile, rich environments in contrast to laboratory experiments, which involve inoculating sterile culture with few bacterial cells that then race to fill the available niche. Here, we study the potential implications of this difference, using the production of pyoverdin, an iron‐scavenging siderophore that acts as a public good in the bacteria Pseudomonas aeruginosa. We show that (1) nonproducers are able to invade cultures of producers when added at the start of growth or during early exponential growth phase, but not during late exponential or stationary phase; (2) the producer strain does not produce pyoverdin in the late exponential and stationary phases and so is not paying the cost of cooperating during those phases. These results suggest that whether a nonproducing mutant can invade will depend upon when the mutation arises, as well as the population structure, and raise a potential difficulty with the use of antimicrobial treatment strategies that propose to exploit the invasive abilities of cheats.  相似文献   

17.
Abstract Polyhydroxyalkanoate (PHA) accumulation and the morphology of PHA inclusion bodies were examined in Bacillus megaterium , strain 11561. Our results show a pattern of PHA degradation and synthesis, and of inclusion body growth and proliferation not previously reported. Degradation of PHA in the lag phase was followed by synthesis of PHA at an accelerating rate during exponential growth. PHA accumulation reached a maximum rate at late exponential/early stationary phase and the rate declined to a lower steady state in the stationary phase. During exponential and early stationary phase growth, PHA had a faster doubling rate than that of total cell biomass (w/w). Results of the morphology studies suggest that PHA inclusion bodies proliferated by budding and reached maximum size by early stationary phase growth. This pattern was observed in minimal and in rich media.  相似文献   

18.
Metabolism of monoclonal antibodies (MAb) during the growth of mouse hybridoma, producing MAb to phage lambda, has been studied. It was shown that the specific production of MAb decreased by 25-35% in the stationary phase of growth in comparison with the middle of the exponential growth phase, which was associated with the decrease in the rate of MAb synthesis. The secretion kinetics of MAb did not change during the growth of hybridoma cells. MAb did not degrade inside the cells and in the culture medium after being secreted. The ratio of the synthesis rate of MAb to that of cellular proteins increased from 7-10% in the exponential growth phase to 14-18% in the stationary phase, which points to a specific regulation of MAb synthesis in comparison with cellular proteins. Possible regulation mechanisms for synthesis of MAb and cellular proteins during the growth of hybridoma cells are discussed.  相似文献   

19.
20.
The time course of the accumulation of triacylglycerols (TAGs) in Rhodococcus opacus PD630 or of TAGs plus polyhydroxyalkanoates (PHA) in Rhodococcus ruber NCIMB 40126 with gluconate or glucose as carbon source, respectively, was studied. In addition, we examined the mobilization of these storage compounds in the absence of a carbon source. R. opacus accumulated TAGs only after the exhaustion of ammonium in the medium, and, with a fixed concentration of the carbon source, the amounts of TAGs in the cells increased with decreasing concentrations of ammonium in the medium. When these cells were incubated in the absence of an additional carbon source, about 90% of these TAGs were mobilized and used as endogenous carbon source, particularly if ammonium was available. R. ruber accumulated a copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate already during the early exponential growth phase, whereas TAGs were synthesized and accumulated mainly during the late exponential and stationary growth phases. In the stationary growth phase, synthesis of TAGs continued, whereas PHA was partially mobilized. In the absence of an additional carbon source but in the presence of ammonium, mobilization of TAGs started first and was then paralleled by the mobilization of PHA, resulting in an approximately 90% and 80% decrease of these storage compounds, respectively. During the accumulation phase, interesting shifts in the composition of the two storage compounds occurred, indicating that the substrates of the PHA synthase and the TAG synthesizing enzymes were provided to varying extents, depending on whether the cells were in the early or late exponential or in the stationary growth phase. Received: 12 January 2000 / Received revision: 22 February 2000 / Accepted: 25 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号