首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axonemes are ancient organelles that mediate motility of cilia and flagella in animals, plants, and protists. The long evolutionary conservation of axoneme architecture, a cylinder of nine doublet microtubules surrounding a central pair of singlet microtubules, suggests all motile axonemes may share common assembly mechanisms. Consistent with this, alpha- and beta-tubulins utilized in motile axonemes fall among the most conserved tubulin sequences [1, 2], and the beta-tubulins contain a sequence motif at the same position in the carboxyl terminus [3]. Axoneme doublet microtubules are initiated from the corresponding triplet microtubules of the basal body [4], but the large macromolecular "central apparatus" that includes the central pair microtubules and associated structures [5] is a specialization unique to motile axonemes. In Drosophila spermatogenesis, basal bodies and axonemes utilize the same alpha-tubulin but different beta-tubulins [6--13]. beta 1 is utilized for the centriole/basal body, and beta 2 is utilized for the motile sperm tail axoneme. beta 2 contains the motile axoneme-specific sequence motif, but beta 1 does not [3]. Here, we show that the "axoneme motif" specifies the central pair. beta 1 can provide partial function for axoneme assembly but cannot make the central microtubules [14]. Introducing the axoneme motif into the beta 1 carboxyl terminus, a two amino acid change, conferred upon beta 1 the ability to assemble 9 + 2 axonemes. This finding explains the conservation of the axoneme-specific sequence motif through 1.5 billion years of evolution.  相似文献   

2.
Using Drosophila spermatogenesis as a model, we show that function of the beta-tubulin C-terminal tail (CTT) is not independent of the body of the molecule. For optimal microtubule function, the beta-tubulin CTT and body must match. beta2 is the only beta-tubulin used in meiosis and spermatid differentiation. beta1-tubulin is used in basal bodies, but beta1 cannot replace beta2. However, when beta1 is co-expressed with beta2, both beta-tubulins are equally incorporated into all microtubules, and males exhibit near wild type fertility. In contrast, co-expression of beta2beta1C and beta1beta2C, two reciprocal chimeric molecules with bodies and tails swapped, results in defects in meiosis, cytoskeletal microtubules, and axonemes; males produce few functional sperm and few or no progeny. In these experiments, all the same beta-tubulin parts are present, but unlike the co-assembled native beta-tubulins, the "trans" configuration of the co-assembled chimeras is poorly functional. Our data thus reveal essential intra-molecular interactions between the CTT and other parts of the beta-tubulin molecule, even though the CTT is a flexible surface feature of tubulin heterodimers and microtubules. In addition, we show that Drosophila sperm tail length depends on the total tubulin pool available for axoneme assembly and spermatid elongation. D. melanogaster and other Drosophila species have extraordinarily long sperm tails, the length of which is remarkably constant in wild type flies. We show that in males of experimental genotypes that express wild type tubulins but have half the amount of the normal tubulin pool size, sperm tails are substantially shorter than wild type.  相似文献   

3.
4.
Lacefield S  Solomon F 《Genetics》2003,165(2):531-541
Undimerized beta-tubulin is toxic in the yeast S. cerevisiae. It can arise if levels of beta-tubulin and alpha-tubulin are unbalanced or if the tubulin heterodimer dissociates. We are using the toxicity of beta-tubulin to understand early steps in microtubule morphogenesis. We find that deletion of PLP1 suppresses toxic beta-tubulin formed by disparate levels of alpha- and beta-tubulin. That suppression occurs either when alpha-tubulin is modestly underexpressed relative to beta-tubulin or when beta-tubulin is inducibly and strongly overexpressed. Plp1p does not affect tubulin expression. Instead, a significant proportion of the undimerized beta-tubulin in plp1Delta cells is less toxic than that in wild-type cells. It is also less able to combine with alpha-tubulin to form a heterodimer. As a result, plp1Delta cells have lower levels of heterodimer. Importantly, plp1Delta cells that also lack Pac10, a component of the GimC/PFD complex, are even less affected by free beta-tubulin. Our results suggest that Plp1p defines a novel early step in beta-tubulin folding.  相似文献   

5.
Dinitroaniline herbicides are used for the selective control of weeds in arable crops. Dinitroaniline herbicide resistance in the invasive weed goosegrass was previously shown to stem from a spontaneous mutation in an alpha-tubulin gene. We transformed and regenerated tobacco plants with an alpha/beta-tubulin double gene construct containing the mutant alpha-tubulin gene and showed that expression of this construct confers a stably inherited dinitroaniline-resistant phenotype in tobacco. In all transformed lines, the transgene alpha- and beta-tubulins increased the cytoplasmic pool of tubulin approximately 1.5-fold while repressing endogenous alpha- and beta-tubulin synthesis by up to 45% in some tissues. Transgene alpha- and beta-tubulin were overexpressed in every plant tissue analyzed and comprised approximately 66% of the total tubulin in these tissues. Immunolocalization studies revealed that transgene alpha- and beta-tubulins were incorporated into all four microtubule arrays, indicating that they are functional. The majority of the alpha/beta-tubulin pools are encoded by the transgenes, which implies that the mutant alpha-tubulin and the beta-tubulin can perform the majority, if not all, of the roles of microtubules in both juvenile and adult tobacco plants.  相似文献   

6.
Isolated microtubule proteins from the cold-adapted fish, Atlantic cod (Gadus morhua), assemble at temperatures between 8 and 30 degrees C, while avian and mammalian microtubules normally do not assemble at temperatures below 20 degrees C. Tubulin, the main component in microtubules, is expressed as many isotypes. Microtubules with different isotype composition have been shown to have different dynamic properties in vitro. Our hypothesis was that cold-tolerance of microtubules is caused by tubulin isotypes that differ in the primary sequence compared to mammalian tubulins. Here we show that transfection of human HepG2 cells with cod beta-tubulin induced cold-adaptation of the endogenous microtubules. Incorporation of one single tubulin isotype can induce cold-tolerance to cold-intolerant microtubules. Three cod beta-tubulin isotypes were tested and two of these (beta1 and beta2) transferred cold-tolerance to HepG2 microtubules, thus not all cod beta-tubulins were able to confer cold-stability.  相似文献   

7.
Ninefold microtubule symmetry of the eukaryotic basal body and motile axoneme has been long established [1-3]. In Drosophila, these organelles contain distinct but similar beta-tubulin isoforms [4-10]: basal bodies contain only beta1-tubulin, and only beta2-tubulin is used for assembly of sperm axonemes. A single alpha-tubulin functions throughout spermatogenesis [11,12]. Thus, differences in organelle assembly reside in beta-tubulin. We tested the ability of beta1 to function in axonemes and found that beta1 alone could not generate axonemes. Small sequence differences between the two isoforms therefore mediate large differences in assembly capacity, even though these two related organelles have a common evolutionarily ancient architecture. In males with equal beta1 and beta2, beta1 was co-incorporated at equimolar ratio into functional sperm axonemes. When beta1 exceeded beta2, however, axonemes with 10 doublets were produced, an alteration unprecedented in natural phylogeny. Addition of the tenth doublet occurred by a novel mechanism, bypassing the basal body. It has been assumed that the instructions for axoneme morphogenesis reside primarily in the basal body, which normally serves as the axonemal template. Our data reveal that beta-tubulin requirements for basal bodies and axonemes are distinct, and that key information for axoneme architecture resides in the axonemal beta-tubulin.  相似文献   

8.
beta-tubulin of budding yeast Saccharomyces cerevisiae is a polypeptide of 457 amino acids encoded by the unique gene TUB2. We investigated the function of the carboxy-terminal part of yeast beta-tubulin corresponding to the carboxy-terminal variable domain of mammalian and avian beta-tubulins. The GAA codon for Glu-431 of TUB2 was altered to TAA termination codon by using in vitro site-directed mutagenesis so that the 27-amino acid residues of the carboxyl terminus was truncated when expressed. The mutagenized TUB2 gene (tub2(T430)) was introduced into a haploid strain in which the original TUB2 gene had been disrupted. The tub2(T430) haploid strain grows normally less than 30 but not at 37 degrees C. The truncation of the carboxyl terminus caused hypersensitivity to antimitotic drugs and low spore viability at the permissive temperature for vegetative growth. Immunofluorescence labeling with antitubulin antibody and DNA staining with 4',6'-diamidino-2-phenylindole showed that in these cells at 37 degrees C, formation of spindle microtubules and nuclear division was inhibited and cytoplasmic microtubule distribution was aberrant. These results suggest that functions of the carboxy-terminal domain of yeast beta-tubulin are necessary for cells growing under suboptimal growth conditions although it is not essential for growth under the optimal growth conditions. Cells bearing tub2(411), a tub2 gene in which the GAA codon for Glu-412 was altered to TAA were no more viable at any temperature. In addition, a haploid strain carrying two functional beta-tubulin genes is not viable.  相似文献   

9.
The alpha- and beta-tubulin folding pathways   总被引:4,自引:0,他引:4  
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.  相似文献   

10.
Microtubules exhibit dynamic instability, converting abruptly between assembly and disassembly with continued growth dependent on the presence of a tubulin-GTP cap at the plus end of the organelle. Tubulin, the main structural protein of microtubules, is a heterodimer composed of related polypeptides termed alpha-tubulin and beta-tubulin. Most eukaryotic cells possess several isoforms of the alpha- and beta-tubulins, as well as gamma-tubulin, an isoform restricted to the centrosome. The isoforms of tubulin arise either as the products of different genes or by posttranslational processes and their synthesis is subject to regulation. Tubulin isoforms coassemble with one another and isoform composition does not appear to determine whether a microtubule is able to carry out one particular activity or another. However, the posttranslational modification of polymerized tubulin may provide chemical signals which designate microtubules for a certain function. Microtubules interact with proteins called microtubule-associated proteins (MAPs) and they can be divided into two groups. The structural MAPs stimulate tubulin assembly, enhance microtubule stability, and influence the spatial distribution of microtubules within cells. The dynamic MAPs take advantage of microtubule polarity and organization to vectorially translocate cellular components. The interactions between microtubules and MAPs contribute to the structural-functional integration that characterizes eukaryotic cells.  相似文献   

11.
We have used Drosophila testis-specific beta2-tubulin to determine sequence requirements for different microtubules. The beta2-tubulin C-terminal tail has unique sperm-specific functions [Dev Biol 158:267-286 (2003)] and is also important for forming stable heterodimers with alpha-tubulin, a general function common to all microtubules [Mol Biol Cell 12(7):2185-2194 (2001)]. beta-tubulins utilized in motile 9 + 2 axonemes contain a C-terminal sequence "axoneme motif" [Science 275 (1997) 70-73]. C-terminal truncated beta2-tubulin cannot form the sperm tail axoneme. Here we show that a partially truncated beta2-tubulin (beta2Delta7) containing only the proximal portion of the C-terminal tail, including the axoneme motif, can support production of functional motile sperm. We conclude that these proximal eight amino acids specify the binding site for protein(s) essential to support assembly of the motile axoneme. Males that express beta2Delta7, although they are fertile, produce fewer sperm than wild type males. Beta2Delta7 causes a slightly increased error rate in spermatogenesis attributable to loss of stabilizing properties intrinsic to the full-length C-terminal tail. Therefore, beta2Delta7 males would be at a selective disadvantage and it is likely that the full-length C-terminus would be essential in the wild and in evolution.  相似文献   

12.
13.
The colR4 and colR15 beta 2-tubulin missense mutations for lysine-350 in Chlamydomonas reinhardtii (Lee and Huang, 1990) were originally isolated by selection for resistance to the growth inhibitory effects of colchicine. The colR4 and colR15 mutants have been found to be cross resistant to vinblastine and several classes of antimitotic herbicides, including the dinitroanilines (oryzalin, trifluralin, profluralin, and ethafluralin); the phosphoric amide amiprophos methyl; and the dimethyl propynl benzamide pronamide. Like colchicine and vinblastine, the antimitotic effects of these plant-specific herbicides have been associated with the depolymerization of microtubules. In contrast to their resistance to microtubule-depolymerizing drugs, the mutants have an increased sensitivity to taxol, a drug which enhances the polymerization and stability of microtubules. This pattern of altered sensitivity to different microtubule inhibitors was found to cosegregate and corevert with the beta-tubulin mutations providing the first genetic evidence that the in vivo herbicidal effects of the dinitroanilines, amiprophos methyl, and pronamide are related to microtubule function. Although wild-type like in their growth characteristics, the colR4 and colR15 mutants were found to have an altered pattern of microtubules containing acetylated alpha-tubulin, a posttranslational modification that has been associated with stable subsets of microtubules found in a variety of cells. Microtubules in the interphase cytoplasm and those of the intranuclear spindle of mitotic cells, which in wild-type Chlamydomonas cells do not contain acetylated alpha-tubulin, were found to be acetylated in the mutants. These data taken together suggest that the colR4 and colR15 missense mutations increase the stability of the microtubules into which the mutant beta-tubulins are incorporated and that the altered drug sensitivities of the mutants are a consequence of this enhanced microtubule stability.  相似文献   

14.
Polyglycylation occurs through the post-translational addition of a polyglycine peptide to the gamma-carboxyl group of glutamic acids near the C terminus of alpha- and beta-tubulin, and has been found only in cells with axonemes, from protists to humans. In Tetrahymena thermophila, multiple sites of polyglycylation on alpha-tubulin are dispensable. By contrast, mutating similar sites on beta-tubulin has site-specific effects, affecting cell motility and cytokinesis, or resulting in cell death. Here, we address the lethality of a polyglycylation deficiency in T. thermophila using heterokaryons. Cells with a lethal mutation in the polyglycylation domain of beta-tubulin assembled axonemes that lack the central pair, B-subfibres and the transitional zone of outer microtubules (MTs). Furthermore, an arrest in cytokinesis occurred, and was associated with incomplete severing of cortical MTs positioned near the cleavage furrow. Thus, tubulin polyglycylation is required for the maintenance of some stable microtubular organelles that are all known to be polyglycylated in vivo, but its effects on MTs appear to be organelle-specific.  相似文献   

15.
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival.  相似文献   

16.
Antibodies to synthetic peptides from the alpha and beta-tubulin sequences were employed to study zones of this protein active in microtubule assembly. In purified calf brain tubulin, six short sequences, selected according to their hydrophilicity and conservation, were found to be accessible to their affinity-purified immunoglobulin G (IgG) antibodies, in a competition radioimmunoassay performed under non-assembly native conditions. This indicated that the six sequences are exposed on the surface of the tubulin alpha beta heterodimer. IgG antibodies to the alpha(430-443) and beta(412-431) sequences perturbed substoichiometrically the assembly of purified tubulin, inducing microtubule bundling and the formation of opened up structures. These positions, which are close to the C termini, were accessible to the anti-peptide antibodies in taxol-induced microtubules, Zn2(+)-induced tubulin sheets, Mg2(+)-induced tubulin rings and in PtK2 cell microtubules. This, together with the comparison of the sizes and gross shapes of the antibody probes and microtubules, suggested that these sequences might be located at the protruding parts of the protofilaments. Antibodies to positions alpha(155-168) did not react with microtubules, while the equivalent zone beta(153-165) was accessible. The alpha(214-226) and beta(241-256) sequences were antigenically occluded in the taxol microtubules, Zn2(+)-induced sheets and Mg2(+)-induced ring arrays, as well as in native microtubules from PtK2 cells, though they became reactive by fixation. This result strongly suggested that these two zones are close to tubulin-tubulin contact sites. A working model is proposed in which the positions alpha(214-226) and beta(241-256) are close to the axial contacts between heterodimers, which lead to protofilament formation, while the positions alpha(241-256) and beta(214-226) are suggested to be related to the alpha-beta binding interface within the heterodimer.  相似文献   

17.
Tubulin folding cofactors B (TBCB) and E (TBCE) are alpha-tubulin binding proteins that, together with Arl2 and cofactors D (TBCD), A (TBCA or p14) and C (TBCC), participate in tubulin biogenesis. TBCD and TBCE have also been implicated in microtubule dynamics through regulation of tubulin heterodimer dissociation. Understanding the in vivo function of these proteins will shed light on the Kenny-Caffey/Sanjad-Sakati syndrome, an important human disorder associated with TBCE. Here we show that, when overexpressed, TBCB depolymerizes microtubules. We found that this function is based on the ability of TBCB to form a binary complex with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and in vitro. We also show that TBCE, TBCB and alpha-tubulin form a ternary complex after heterodimer dissociation, whereas the free beta-tubulin subunit is recovered by TBCA. These complexes might serve to escort alpha-tubulin towards degradation or recycling, depending on the cell requirements.  相似文献   

18.
Tubulin domains probed by limited proteolysis and subunit-specific antibodies   总被引:22,自引:0,他引:22  
The substructure of the tubulin molecule was studied by limited proteolysis and high affinity polyclonal antibodies specific for alpha or beta-tubulin. Brief enzymatic cleavage separates the tubulin monomer into two domains of unequal size. Trypsin splits alpha-tubulin into components with Mr values of 36 X 10(3) and 14 X 10(3), chymotrypsin splits beta-tubulin into 31 X 10(3) Mr and 20 X 10(3) Mr fragments. The cleavage occurs at Arg339 (alpha) and Tyr281 (beta), as determined by sequencing several N-terminal residues of the small domains, i.e. the small domains are the C-terminal parts of the molecules, the large ones are the N-terminal parts. There is a second cleavage site of chymotrypsin within Mr 10(3) to 2 X 10(3) of the C terminus of beta-tubulin. The fragments can be separated only under denaturing conditions. They copolymerize into microtubules and incomplete microtubule walls joined by a wall junction, forming S-shapes and hooks in cross-section. The antibodies were raised against electrophoretically purified tubulin monomers. Those produced with alpha-tubulin are directed predominantly against the large domains; they are either specific for alpha-tubulin or cross-react with the large domain of beta-tubulin. Conversely, antibodies raised against beta-tubulin are directed predominantly against the small domains (beta-specific and beta-cross-reacting fractions). Thus the antibodies discriminate not only between the tubulin chains but also between the domains generated by the proteases. The complementary antigenicity correlates well with the stability of the domains. Potential sites of antigenic determinants are located within the polypeptide chains by comparing theoretical predictions with the pattern of immunoblots. Two epitopes of the alpha-cross-reacting antibodies have been located approximately. One is very close to the C terminus (within about 20 residues), the other is close to the N terminus (within about Mr 8 X 10(3) ). The epitope of the beta-cross-reacting antibody is also located within Mr 12 X 10(3) of the C terminus. The antibodies prevent microtubule assembly and cause disassembly of preformed microtubules. A variety of breakdown products are observed by electron microscopy. They include fibres of about 10 nm width, sheets with undefined substructure, thick tapered fibrous bundles and wispy filaments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
《The Journal of cell biology》1983,97(4):1055-1061
Two Chinese hamster ovary cell lines with mutated beta-tubulins (Grs-2 and Cmd-4) and one that has a mutation in alpha-tubulin (Tax-1) are temperature sensitive for growth at 40.5 degrees C. To determine the functional defect in these mutant cells at the nonpermissive temperature, they were characterized with respect to cell cycle parameters and microtubule organization and function after relatively short periods at 40.5 degrees C. At the nonpermissive temperature all the mutants had normal appearing cytoplasmic microtubules. Premature chromosome condensation analysis failed to show any discrete step in the interphase cell cycle in which these mutants are arrested. These cells, however, show several defects at the nonpermissive temperature that appear related to the function of microtubules during mitosis. Time-lapse studies showed that mitosis was lengthened in the three mutant lines at 40.5 degrees C as compared with the wild-type cells at this temperature, resulting in a higher proportion of cells in mitosis after temperature shift. There was also a large increase in multinucleated cells in mutant populations after incubation at the nonpermissive temperature. Immunofluorescent studies using a monoclonal anti--alpha-tubulin antibody showed that the mutant cells had a high proportion of abnormal spindles at the nonpermissive temperature. The two altered beta-tubulins and the altered alpha-tubulin all were found to cause a similar phenotype at the high temperature that results in mitotic delay, defective cytokinesis, multinucleation, and ultimately, cell death. We conclude that spindle formation is the limiting microtubule function in these mutant cell lines at the nonpermissive temperature and that these cell lines will be of value for the study of the precise role of tubulin in mammalian spindle formation.  相似文献   

20.
Microtubules are essential cytoskeletal structures that mediate several dynamic processes in a cell. To shed light on the structural processes relating to microtubule formation and dynamic instability, we investigated microtubules composed of 15 protofilaments using cryo-electron microscopy, helical image reconstruction and computational modelling. Analysis of the configuration of the alpha beta-tubulin heterodimer shows distinct structural differences in both subunits, and illustrates that the tubulin subunits have different roles in the microtubule lattice. Our modelling data suggest that after GTP hydrolysis microtubules, adopt a conformational state somewhere between a straight protofilament conformation--as found in zinc-induced tubulin sheets--and an outward curved conformation--as found in tubulin-stathmin complexes. The tendency towards a curved conformation seems to be mediated mostly by beta-tubulin, whereas alpha-tubulin resembles a state more related to the straight structure. Our data suggest a possible explanation of dynamic instability of microtubules, and for nucleotide-sensitive microtubule-binding properties of microtubule-associated proteins and molecular motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号