首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against damping-off caused by P. ultimum.  相似文献   

2.
Mycorrhizoplane-associated actinomycetes were isolated using an enrichment technique from red pine (Pinus resinosa Ait.) roots of seedlings recently outplanted onto cleared northern hardwood sites in the Upper Peninsula of Michigan, USA. Interactions were assessedin vitro between actinomycete isolates and three commonly occurring ectomycorrhizal fungi (Laccaria bicolor (Maire) Orton,L. laccata (Scop.: Fr.) Berk. and Br., andThelephora terrestris Fr.). Most actinomycete isolates exerted a range of effects on the growth of the three fungus isolates during the four week test period, inhibiting some while stimulating others; several inhibited growth of all three fungus isolates. Mycorrhizoplane-associated actinomycetes show potential for use as coinoculants with selected ectomycorrhizal fungi to optimize the soil microflora for developing seedlings.  相似文献   

3.
Summary Data are presented on the antagonistic effects of the fungi isolated from sclerotia ofSclerotium cepivorum and from nonrhizosphere soil taken from around the roots of infected onions upon mycelial growth and sclerotial germination ofS. cepivorum. Most of the isolated fungi especiallyPenicillium species were antagonistic to mycelial growth. Sclerotial germination was slightly inhibited by diffusates of these fungal isolates. Testing the antifungal effect of someAllium extracts against the fungal isolates by the inhibition zone method showed that garlic extract has the greatest antifungal effects and onion extract is the least potent. However, spore germination tests indicated that onion extract completely inhibits the spore germination of all test fungi. The role of host-plant extracts in stimulating sclerotial germination is discussed.  相似文献   

4.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

5.
A total of 445 actinomycete isolates were obtained from 16 medicinal plant rhizosphere soils. Morphological and chemotaxonomic studies indicated that 89% of the isolates belonged to the genus Streptomyces, 11% were non-Streptomycetes: Actinomadura sp., Microbispora sp., Micromonospora sp., Nocardia sp, Nonomurea sp. and three isolates were unclassified. The highest number and diversity of actinomycetes were isolated from Curcuma mangga rhizosphere soil. Twenty-three Streptomyces isolates showed activity against at least one of the five phytopathogenic fungi: Alternaria brassicicola, Collectotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum and Sclerotium rolfsii. Thirty-six actinomycete isolates showed abilities to produce indole-3-acetic acid (IAA) and 75 isolates produced siderophores on chrome azurol S (CAS) agar. Streptomyces CMU-PA101 and Streptomyces CMU-SK126 had high ability to produced antifungal compounds, IAA and siderophores.  相似文献   

6.
One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii, Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.  相似文献   

8.
The antifungal-producing potential of actinomycete populations from the rhizosphere of low-altitude sagebrush, Artemisia tridentata, has been examined. In a continued investigation of new sources of antifungal-producing microorganisms, this study examined the antifungal-producing potential of actinomycetes from the rhizosphere of high-altitude A. tridentata. With high-altitude sagebrush, rhizosphere soil actinomycete numbers were one to four orders of magnitude higher than those found in nonrhizosphere bulk soils and different from those found with the low-altitude plants. A total of 122 actinomycete isolates was screened against nine fungal species and six bacterial species for the production of antimicrobial compounds. Four rhizosphere isolates, Streptomyces amakusaensis, S. coeruleorubidus, S. hawaiiensis and S. scabies, showed broad-spectrum antifungal activity against three or more fungal species in plate assays. In liquid antagonism assays, mycelium production by Aspergillus niger was reduced by up to 50% by two of the actinomycete isolates. These results demonstrate the potential of rhizosphere microbiology in the search for new antimicrobials.  相似文献   

9.
番茄灰霉病生防链霉菌筛选及鉴定   总被引:1,自引:0,他引:1  
【背景】由灰葡萄孢侵染所致的番茄灰霉病是一类重要的真菌病害,生物防治具有环境友好、病原菌不易产生抗药性等特点,是果蔬灰霉病绿色防控的有效措施。【目的】筛选对番茄灰霉病具有防病作用且能促进番茄种子发芽的广谱拮抗性链霉菌,并明确该菌株种级分类地位。【方法】采用琼脂块法筛选拮抗番茄灰霉病菌的链霉菌菌株,采用对峙培养法和生长速率法检测菌株T22抑菌谱,通过产胞外酶活性检测、离体叶片防效和种子发芽试验明确该菌株的防病促生相关特性,根据形态学特征、生理生化特性和分子生物学方法对该菌株进行种类鉴定。【结果】从分离的56株放线菌中筛选到14株对番茄灰霉病菌具有拮抗效果的放线菌菌株,其中链霉菌T22对番茄灰霉病菌抑制作用最强,且具有较广抑菌谱,同时菌株T22具有产生纤维素酶和几丁质酶的能力。菌株T22无菌发酵滤液对番茄灰霉病菌、桃褐腐病菌、黄瓜枯萎病菌抑菌率分别为84.6%、81.5%和79.1%;其无菌发酵滤液原液对番茄灰霉病离体防效为55.1%;100倍稀释液处理番茄种子,胚轴、胚根和种子活力指数分别增加15.1%、29.7%和43.9%。根据形态学特征、生理生化特性和多基因聚类分析将链霉菌T22鉴定为白黑链霉菌(Streptomycesalboniger)。【结论】白黑链霉菌T22具有较强的抗真菌、产胞外酶、防病和促生活性,在番茄灰霉病生物防治中具有较好的开发应用潜力。  相似文献   

10.

Recolonization of wind-dispersed tree species in degraded areas may decline with distance from remnant forest fragments because seed rain frequently decreases with distance from the seed source. However, regeneration of these species may be even more limited to sites close to the seed source if dispersal distance is negatively affected by seed mass, and germination probability is positively affected by seed mass. We evaluated these hypotheses in a Mediterranean-type ecosystem of central Chile, using the wind-dispersed tree species Quillaja saponaria. We assessed the seed rain curve in a degraded open area adjacent to a remnant forest fragment of this species, and related seed mass with dispersal distance from the seed source. Then, we evaluated the relationship between seed mass, germination, and seedling growth, and if seeds that fall nearer the seed source have greater germination probability. We found a decreasing seed rain with the distance from the seed source. Seed mass was not related to dispersal distance, although seeds with higher wing area dispersed further. Germination probability was significantly and positively related to the seed mass. We observed no significant relationship between distance and germination probability. We conclude that germination probability of this species does not vary along the seed rain curve, and that the recruitment density would be greater near the seed source only due to decreasing seed rain with distance. Our results suggest that this species has the potential to be passively restored in degraded areas, especially within the first 70 m from the remnant forest fragments.

  相似文献   

11.
About 312 actinomycetes were isolated from soil samples on chitin agar. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising isolate with strong antifungal activity against pathogenic fungi was selected for further studies. This isolate was from Pune, and was active against both yeasts and molds. Various fermentation parameters were optimized. Based on morphological and biochemical parameters, the isolate was identified as Streptomyces. The correlation of antifungal activity with growth indicated growth dependent production of antimetabolite. Maximum antifungal metabolite production (600 units/ml) was achieved in the late log phase, which remained constant during stationery phase, and it was extracellular in nature.  相似文献   

12.
Commercial fish emulsion was evaluated as a plant growth medium and as a nutrient base to enhance radish (Raphanus sativus L. var. sativus) growth by bacterial and actinomycete isolates. Six bacterial isolates including three actinomycetes were selected from a screening of 54 bacteria (including 23 actinomycetes) based on their ability to produce plant growth regulators (PGRs) and to colonize radish roots. These isolates were tested in the presence and absence of autoclaved or non-autoclaved fish emulsion or inorganic fertilizers. The nutrient contents and types and levels of PGRs in tissues of treated plants were assayed to determine the basis of growth promotion. Fish emulsion was found to support plant growth in a sandy soil as effectively as an applied inorganic fertilizer. The plant growth promotion by bacterial and actinomycete isolates was most pronounced in the presence of autoclaved or non-autoclaved fish emulsion than in the presence of the inorganic fertilizers. The bacterial and actinomycete isolates were capable of producing auxins, gibberellins and cytokinins and appeared to use fish emulsion as a source of nutrients and precursors for PGRs. PGR levels in planta following combined treatments of the bacterial and actinomycete isolates and fish emulsion were found to be significantly enhanced over other treatments. The effect of fish emulsion appears to be more related to its role as a nutrient base for the bacterial and actinomycete isolates rather than to the increased activity of the general microflora of treated soil. This is the first report of fish emulsion as a nutrient base for plant growth promoting rhizobacteria. These results also indicate that the successful treatment can be effective and economical for horticultural production in sandy soils such as those found in the United Arab Emirates where fish emulsion is already in use as a substitute or supplement for inorganic fertilizer.  相似文献   

13.
14.
Prolonged use of broad-spectrum antibiotics has led to the emergence of drug-resistant pathogens, both in medicine and in agriculture. New threats such as biological warfare have increased the need for novel and efficacious antimicrobial agents. Natural habitats not previously examined as sources of novel antibiotic-producing microorganisms still exist. One such habitat is the rhizosphere of desert shrubs. Here, we show that one desert shrub habitat, the rhizosphere of desert big sagebrush (Artemisia tridentata) is a source of actinomycetes capable of producing an extensive array of antifungal metabolites. Culturable microbial populations from both the sagebrush rhizosphere and nearby bulk soils from three different sites were enumerated and compared, using traditional plate-count techniques and antibiotic activity bioassays. There were no statistical differences between the relative numbers of culturable non-actinomycete eubacteria, actinomycetes and fungi in the rhizosphere versus bulk soils, but PCR amplification of the 16S rRNA gene sequences of the total soil DNA and denaturing gradient gel electrophoresis showed that the community structure was different between the rhizosphere and the bulk soils. A high percentage of actinomycetes produced antimicrobials; and the percentage of active producers was significantly higher among the rhizosphere isolates, as compared with the bulk soil isolates. Also, the rhizosphere strains were more active in the production of antifungal compounds than antibacterial compounds. 16S rRNA gene sequence analysis showed that sagebrush rhizospheres contained a variety of Streptomyces species possessing broad spectrum antifungal activity. Scanning electron microscopy studies of sagebrush root colonization by one of the novel sagebrush rhizosphere isolates, Streptomyces sp. strain RG, showed that it aggressively colonized young sagebrush roots, whereas another plant rhizosphere-colonizing strain, S. lydicus WYEC108, not originally isolated from sagebrush, was a poor colonizer of the roots of this plant, as were two other Streptomyces isolates from forest soil. These results support the hypothesis that the rhizosphere of desert big sagebrush is a promising source of habitat-adapted actinomycetes, producing antifungal antibiotics.  相似文献   

15.
Carrot seed oil is the source of the carotane sesquiterpenes carotol, daucol and beta-caryophyllene. These sesquiterpenic allelochemicals were evaluated against Alternaria alternata isolated from the surface of carrot seeds cultivar Perfekcja, a variety widely distributed in horticultural practise in Poland. Alternaria alternata is one of the most popular phytotoxic fungi infesting the carrot plant. The strongest antifungal activity was observed for the main constituent of carrot seed oil, carotol, which inhibited the radial growth of fungi by 65% at the following concentration.  相似文献   

16.
凋落物物理阻隔对格氏栲种子萌发及胚根生长的影响   总被引:1,自引:0,他引:1  
朱静  刘金福  何中声  邢聪  王雪琳  江蓝 《生态学报》2020,40(16):5630-5637
为了探讨凋落物物理阻隔对格氏栲天然林自然更新状况的影响,通过模拟野外凋落物覆盖,设置格氏栲种子上层覆盖厚0 cm(CK)、2 cm(D2)、4 cm(D4)、6 cm(D6)、8 cm(D8)及种子下层铺垫厚2 cm(U2)、4 cm(U4)凋落物等7个处理,分析凋落物覆盖方式及厚度对格氏栲种子萌发及胚根生长的影响。结果表明:(1)凋落物覆盖方式及厚度对种子萌发进程存在显著影响。CK萌发持续时间最长,上层覆盖处理(D)次之,下层铺垫处理(U)的种子起始萌发时间显著滞后。(2)CK种子萌发率最高,其次D6处理发芽速度较快,发芽整齐;U处理较D处理的发芽率及发芽势均显著降低,且萌发抑制率显著增加。(3)D处理的种子胚根生长速度快,胚根长度大于CK;U处理的种子胚根生长速度呈先慢后快趋势。可见,凋落物是影响格氏栲种子萌发及胚根生长的重要因素,主要通过阻碍种子与土壤接触而抑制萌发,影响格氏栲林更新。  相似文献   

17.
A survey was conducted to determine the microflora on eggs and females of Meloidogyne spp. collected from plant roots and infested soil in China. A total of 455 fungal isolates belonging to 24 genera and 52 isolates of actinomycetes were obtained from 28 samples from greenhouses and fields in Hainan, Yunnan, Fujian, Hebei, Shandong, and Beijing. The predominant fungal species were Paecilomyces lilacinus (49.3% of the isolates), Fusarium spp. (7.9%), Pochonia chlamydosporia (6.9%), Penicillium spp. (5.7%), Aspergillus spp. (3.2%), and Acremonium spp. (2.8%). Actinomycetes were frequently encountered (10.3%) as well. A total of 350 isolates of nematophagous fungi and actinomycetes were evaluated for their parasitism of eggs and effects on egg hatch and juvenile mortality in vitro. Pathogenicity varied among isolates, and 29.1% of isolates parasitized over 90% eggs 4 days after inoculation. Results also show that seven isolates of fungi and actinomycetes reduced egg hatch rates to less than 10% contrasted to the control of 65.8%, and three isolates killed all hatched juveniles after 7 days. Seventeen fungal isolates and four actinomycete isolates with high pathogenicity in vitro were selected to test biocontrol efficacy in the greenhouse. They reduced tomato root gall index by 13.4-58.9% compared to the no treatment control.  相似文献   

18.
Contamination of plants and seeds with microorganisms is one of the main problems in the production and distribution of various agricultural products, as well as raw herbal material for the preparation of herbal remedies. In targeting microbial contamination, among other bacteria, Bacillus species showed a significant capacity for biocontrol. The antifungal activity of 14 isolates of Bacillus spp. against 15 fungal isolates from medicinal plants was examined utilizing a dual plate assay. The strongest and broadest antagonistic activity against all fungi tested was exhibited by isolates SS-12.6 and SS-13.1 (from a 43% to 74% reduction in fungal growth), while isolates SS-39.1 and SS-39.3 were effective against the fewest fungus species and also had the weakest antifungal activity. The effect of a crude lipopeptide extract (CLE) of Bacillus sp. SS-12.6 was similar to that achieved by a dual culture with isolate SS-12.6, confirming that the antagonism was the result of the antifungal activities of lipopeptides. In addition, essential oils of thyme (0.55 mg/mL) and savory (0.32 mg/mL) in various combinations with the CLE of SS-12.6 were tested for antifungal activity, and additive and synergistic effects for some of the fungi were obtained. When testing the effect of CLE, oils (0.40 mg/mL for thyme oil and 0.21 mg/mL for savory oil) and combinations in situ on marigold seeds, a reduction of total fungal infection without an adverse effect on germination was accomplished by 6-h treatments with CLE of SS-12.6 (85% reduction of fungal infection and 63% germination), supernatant from liquid culture of SS-12.6 (more than 90% reduction of fungal infection with 69% seed germination) and combinations of CLE and savory oil (77% reduction of fungal infection and 62% seed germination) and CLE with thyme and savory oils (about 75% reduction of fungal infection with 69% seed germination).  相似文献   

19.
Aims:  To evaluate the ability of the isolated actinomycetes to inhibit in vitro plant pathogenic fungi and the efficacy of promising antagonistic isolates to reduce in vivo the incidence of root rot induced by Sclerotium rolfsii on sugar beet.
Methods and Results:  Actinomycetes isolated from rhizosphere soil of sugar beet were screened for antagonistic activity against a number of plant pathogens, including S.   rolfsii . Ten actinomycetes out of 195 screened in vitro were strongly inhibitory to S. rolfsii . These isolates were subsequently tested for their ability to inhibit sclerotial germination and hyphal growth of S. roflsii . The most important inhibitions were obtained by the culture filtrate from the isolates J-2 and B-11, including 100% inhibition of sclerotial germination and 80% inhibition of hyphal growth. These two isolates (J-2 and B-11) were then screened for their ability to protect sugar beet against infection of S. rolfsii induced root rot in a pot trial. The treatment of S. rolfsii infested soil with a biomass and culture filtrate mixture of the selected antagonists reduced significantly ( P  ≤ 0·05) the incidence of root rot on sugar beet. Isolate J-2 was most effective and allowed a high fresh weight of sugar beet roots to be obtained. Both antagonists J-2 and B-11 were classified as belonging to the genus Streptomyces species through morphological and chemical characteristics as well as 16S rDNA analysis.
Conclusion:  Streptomyces isolates J-2 and B-11 showed a potential for controlling root rot on sugar beet and could be useful in integrated control against diverse soil borne plant pathogens.
Significance and Impact of the Study:  This investigation showed the role, which actinomycete bacteria can play to control root rot caused by S.   rolfsii , in the objective to reduce treatments with chemical fungicides.  相似文献   

20.
Diversity of actinomycetes and their antifungal activities against some plant pathogenic fungi were examined in various vegetative soils from 14 different sites in the western part of Korea. Actinomycete counts ranged from 1.17 x 10(6) to 4.20 x 10(6) cfu x g(-1) dried soil. A total of 1510 actinomycetes were isolated from the soil samples. Streptomyces was predominant in soils with a pH range of 5.1-6.5, 9.1-13.0% moisture, and 9.1-11.0% organic matter. Most Micromonospora, Dactylosporangium, and Streptosporangium were distributed in soils with pH 4.0-5.0, 2.0-9.0% moisture, and 4.0-7.0% organic matter. Actinomadura and nocardioform actinomycetes were abundant in soils with pH 4.0-5.0 and 13.1-20.0% moisture and with 9.1-11.0 and 4.0-7.0% organic matter, respectively. Populations of Streptomyces were predominant in all the soils, but were highest in grassland and lowest in mountain-forest soils. Micromonospora was most abundant in pepper-field soil and nocardioform actinomycetes were highest in rice paddy field soil. Dactylosporangium was predominant in lake-mud sediments and pepper-field soil, Streptosporangium in lake-mud sediments, and Actinomadura in mountain-forest soil. Antifungal actinomycetes were abundant in orchard soil and lake mud. More than 50% of antifungal isolates from most soils were classified as genus Streptomyces. Actinomycete isolates that showed strong antifungal activity against Alternaria mali, Colletotrichum gloeosporioides, Fusarium oxysporum f.sp. cucumerinum, and Rhizoctonia solani were predominant in pepper-field soils, whereas those against Magnaporthe grisea and Phytophthora capsici were abundant in radish-field soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号