首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify molecular differences between simian virus 40 (SV40) tsA58 mutant large tumor antigen (large T) in cells of tsA58 N-type transformants [FR(tsA58)A cells], which revert to the normal phenotype after the cells are shifted to the nonpermissive growth temperature, and mutant large T in tsA58 A-type transformants [FR(tsA58)57 cells], which maintain their transformed phenotype after the temperature shift, we asked whether the biological activity of these mutant large T antigens at the nonpermissive growth temperature might correlate with phosphorylation at specific sites. At the permissive growth temperature, the phosphorylation patterns of the mutant large T proteins in FR(tsA58)A (N-type) cells and in FR(tsA58)57 (A-type) cells were largely indistinguishable from that of wild-type large T in FR(wt648) cells. After a shift to the nonpermissive growth temperature, no significant changes in the phosphorylation patterns of wild-type large T in FR(wt648) or of mutant large T in FR(tsA58)57 (A-type) cells were observed. In contrast, the phosphorylation pattern of mutant large T in FR(tsA58)A (N-type) cells changed in a characteristic manner, leading to an apparent underphosphorylation at specific sites. Phosphorylation of the cellular protein p53 was analyzed in parallel. Characteristic differences in the phosphorylation pattern of p53 were observed when cells of N-type and A-type transformants were kept at 39 degrees C as opposed to 32 degrees C. However, these differences did not relate to the different phenotypes of FR(tsA58)A (N-type) and FR(tsA58)57 (A-type) cells at the nonpermissive growth temperature. Our results, therefore, suggest that phosphorylation of large T at specific sites correlates with the transforming activity of tsA mutant large T in SV40 N-type and A-type transformants. This conclusion was substantiated by demonstrating that the biological properties as well as the phosphorylation patterns of SV40 tsA28 mutant large T in cells of SV40 tsA28 N-type and A-type transformants were similar to those in FR(tsA58)A (N-type) and in FR(tsA58)57 (A-type) cells, respectively. The phenotype-specific phosphorylation of tsA mutant large T in tsA A-type transformants probably is a cellular process induced during establishment of SV40 tsA A-type transformants, since tsA28 A-type transformant cells could be obtained by a large-T-dependent in vitro progression of cells of the tsA28 N-type transformant tsA28.3 (M. Osborn and K. Weber, J. Virol. 15:636-644, 1975).  相似文献   

2.
It was shown previously that mouse bone marrow cells transformed by simian virus 40 (SV40) show a reversible cell density-dependent phenotypic transition between the nonmacrophage (rapidly growing) and the macrophage (stationary) states; cells in low-density cultures are in the growing phase, express SV40 T antigen strongly as revealed by immunofluorescence, and lose typical macrophage properties such as immune phagocytosis; whereas cells in high-density cultures are in the stationary (nongrowing) phase, express SV40 T antigen weakly, and recover their macrophage properties (Takayama, 1980). In the hope of clarifying the relationship between T antigen, cell growth, and macrophage-specific cellular function, we examined the behavior at 33 and 39 degrees C of mouse bone marrow cells transformed by an SV40 gene A mutant (tsA640) whose mutation renders the molecular weight of 90K (large) T antigen temperature sensitive. The results presented in this paper suggest that functional large T antigen is required for cells in the stationary phase to initiate multiplication when transferred at lower density and is not necessary for a majority of them to maintain the nongrowing state (viability) at both high and lower cell densities, whereas it is required for cells in the growing phase to keep multiplying without losing their viability. The results also suggest that the functional large T antigen does not play a direct role in maintaining the cells as either phagocytic or nonphagocytic. It is also suggested that the physiological or tsA mutation-mediated arrest of growth may or may not be accompanied by induction and/or maintenance of cellular phagocytic activity depending on the culture state.  相似文献   

3.
4.
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.  相似文献   

5.
BALB/3T3 and Swiss/3T3 mouse cells transformed at permissive temperature (33 C) by the early temperature-sensitive mutant of simian virus 40 (SV40), ts(*)101, exhibited a temperature-dependent modulation of SV40 tumor (T) antigen as assayed by immunofluorescence. The percentage of T antigen-positive nuclei in ts(*)101 transformed cells was reduced at restrictive temperature (39 C) when compared to 33 C and to wild-type SV40 transformed cells at either 33 C or 39 C. The percentage of T antigen-positive nuclei in ts(*)101 transformed cells returned to the 33 C control level when the cells were shifted from 39 to 33 C. The ts(*)101 transformed cells could be superinfected with wild-type, but not ts(*)101, virions at 39 C as assayed by an increase in T antigen-positive nuclei.  相似文献   

6.
We have characterized the simian virus 40 (SV40) origin-containing DNA (ori-DNA) replication functions of two SV40 conditional mutant T antigens: tsA438 A-V (tsA58) and tsA357 R-K (tsA30). Both tsA mutant T antigens, immunopurified from recombinant baculovirus-infected insect cells, mediated replication of SV40 ori-DNA in vitro to similar extents as did wild-type T antigen in reactions at 33 degrees C. However, at 41 degrees C, the restrictive temperature, while tsA438 T antigen still generated substantial levels of replication products, tsA357 T antigen did not support any detectable DNA synthesis. Furthermore, preincubation for approximately fourfold-longer time periods at 41 degrees C was required to heat inactivate tsA438 T antigen than to heat inactivate tsA357 T antigen. Unexpectedly, results of analyses of the various DNA replication activities of the two mutant T antigens did not correlate with results from ori-DNA replication reactions. In particular, although tsA357 T antigen was incapable of mediating replication at 41 degrees C at all protein concentrations examined, it displayed either wild-type levels or only partial reductions of the several T-antigen replication-associated activities. These data suggest either that tsA357 T antigen is defective in an as yet unidentified replication function of T antigen or that the combination of its partial defects result in a protein that is unable to support replication. The data also show that two conditional mutant T antigens can be markedly different with respect to thermal sensitivity.  相似文献   

7.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

8.
By using a photoaffinity ligand, cell extracts from transformed macrophages that were established by infection with temperature-sensitive mutants (tsA640) of simian virus 40 (SV40) were examined for cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins. At the nonpermissive temperature for SV40 large T antigen, 39.0 degrees C, no significant cAMP-binding proteins could be detected, such as primary mouse macrophages. At the permissive temperature of 33.0 degrees C, cAMP-binding proteins appeared later than SV40 T antigen expression and cellular DNA synthesis. The profile of cAMP-binding proteins was similar to that of resting, but not proliferating, mouse clonal fibroblasts (BALB/c 3T3). These and previous results suggest that SV40 T antigen influences the expression of cAMP-binding proteins in tsA640-transformed macrophages; the large/small T antigen converts the profile of cAMP-binding proteins from macrophage to fibroblastic cells.  相似文献   

9.
Cultures of mouse macrophage cell lines transformed by wild-type or the tsA640 mutant of simian virus 40 (SV40) show a reversible phenotypic transition between the nonmacrophage (proliferating phase) and the macrophage (stationary phase) states (Takayama, 1980; Tanigawa et al., 1983). Distribution of DNA content in the cultures of the tsA640-transformed macrophage lines in the process of the phenotypic transition was determined by flow cytometry. Taking the mean DNA content of mouse peritoneal macrophages as 1 unit in the scale of fluorescence intensity in the flow cytogram, the transformed macrophages showed, at 33 degrees C, two peaks, one located around the 1.0-unit position (peak 1.0) and the other around the 1.6-unit position (peak 1.6), and a plateau distribution continuing to 3.2 units. Peak 1.0 was predominant in the stationary-phase culture, whereas peak 1.6 was predominant in the proliferating-phase culture. Almost the entire population of the strictly resting culture, which was obtained by culturing the stationary-phase culture for a further 5 days at nonpermissive temperature (39 degrees C), was phagocytic, and had accumulated at peak 1.0. Cells in peak 1.0 moved to peak 1.6 and to higher positions, after the strictly resting culture was sparsely reseeded and incubated at 33 degrees C. In contrast, the DNA content distribution of the successively proliferating cells, which were obtained by repeated passage of an extensively proliferating culture and none of which were phagocytic, was similar to that of proliferating hypotetraploid BALB/c3T3 fibroblasts with a G1 peak at 1.6 unit followed by a plateau containing S- and G2-phase cells. The peak 1.0 cell population appeared from the recloned population of the successively proliferating cells in company with the restoration of the culture condition-dependent phagocytic ability when cocultured with primary macrophages. Each peak in the flow cytogram reflected fairly well DNA content per cell as determined by other methods.  相似文献   

10.
Epithelial ovarian cancer is the most common form of gynaecological malignancy. This lethal disease is thought to arise in ovarian surface epithelial (OSE) cells. The biology of these cells is not well understood, due to the limited amount of tissue that can be obtained from a single biopsy and their limited life span in culture. To overcome these problems, we have conditionally immortalised OSE cells with the catalytic subunit of telomerase (hTERT) and a temperature-sensitive form of SV40 Large T antigen (tsT). We have maintained these cells (designated OSE-C2) in culture for more than 100 population doublings after introduction of the immortalising genes. Early passage OSE-C2 cells have a near-tetraploid karyotype and exhibit a dual mesenchymal-epithelial phenotype, with consistent expression of vimentin and variable expression of cytokeratins and type III collagen, and absence of E cadherin expression. OSE-C2 cells proliferate steadily at the permissive temperature of 33 degrees C, but fail to increase in number at the nonpermissive temperature of 39 degrees C. Serum-deprived OSE-C2 cells are stimulated to grow at 33 degrees C by EGF, whereas they are growth inhibited at 33 degrees C by TGFbeta in the presence or the absence of serum. When temperature shifted to the nonpermissive temperature, OSE-C2 cells modulate to a more mesenchymal phenotype, and a proportion of the cells undergo senescence and/or apoptosis. Moreover, at the nonpermissive temperature, the levels of p53 and SV40 Large T antigen diminish, whilst the level of p21 increases, whereas the level of p16 and telomerase activity is unchanged. This experimental system shows that expression of telomerase alone only allows limited proliferative potential of OSE cells; expression of tsT is necessary to maintain these cells in culture for longer periods, perhaps by its ability to inactivate components of the p53/Rb pathway. OSE-C2 cells may be useful in studying the physiology and differentiation of human OSE cells and provide insight into the poorly understood earliest stages of epithelial ovarian cancer.  相似文献   

11.
Transformation and immortalization of human diploid fibroblasts by simian virus 40 (SV40) is at least a two-stage process, since transformants have a limited lifespan in culture. We have isolated immortalized derivatives (AR5 and HAL) from transformants generated with an origin-defective SV40 genome encoding a heat-labile large T protein (T antigen) and reported that both preimmortal and immortal transformants are continuously dependent on T antigen function for growth as determined by temperature shift experiments. In this study, we demonstrate complex formation between T antigen and the retinoblastoma susceptibility gene product (Rb) at 35 degrees C and observed a reduction in complexes under conditions of loss of T antigen function and growth inhibition at 39 degrees C. Viral oncogenes (polyomavirus large T protein and adenovirus E1A 12S protein) known to bind Rb were introduced into AR5 and HAL cells, both stably by gene transfer and transiently by virus vectors. Such double transformants are still unable to proliferate at 39 degrees C, although complex formation with the newly introduced oncogenes was demonstrated. We suggest that T antigen interacts with other cellular processes in addition to Rb to transform and immortalize human cells in culture. Our finding that p53-T antigen complexes are also temperature dependent in AR5 and HAL cells could provide such an additional mechanism.  相似文献   

12.
The effects of heat shock protein 70 (Hsp70), a molecular chaperone, on the degradation and functional alterations of a mutant large T antigen induced by a nonpermissive temperature were examined. In this study, mouse tracheal epithelial TM02-3 cells harboring temperature-sensitive simian virus 40 large T antigen and stable TM02-3 cells overexpressing human Hsp70 and/or Hsp40 were used. Although the temperature shift from 33 degrees C (permissive temperature) to 39 degrees C (nonpermissive temperature) induced increases in the endogenous chaperones including Hsp70 and Hsp40, degradation of the T antigen, activation of the p53-p21(waf1) pathway, and an arrest of cell growth were observed in the mock cells. In contrast, these changes induced by the temperature shift were partially but significantly prevented in stable cells overexpressing human Hsp70 and/or Hsp40. A combination of Hsp70 and Hsp40 was the most effective, suggesting that Hsp40 may cooperate with Hsp70. Moreover, immunocytochemical observation indicated that human Hsp70 was expressed in the cytoplasm at 33 degrees C, but it colocalized with T antigen in the nucleus at 39 degrees C. These results suggest that overexpressed Hsp70 translocates from the cytoplasm to nucleus, and significantly restores the structural stability and functional defects of mutant large T antigen in the cells.  相似文献   

13.
The simian virus 40 (SV40) mutant tsA1499 contains an 81-base-pair deletion in the region of A gene encoding the C-terminal portion of the large T antigen. This mutant is particularly interesting, since it is a temperature-sensitive mutant that is apparently able to separate the lytic growth and transforming functions of the SV40 large T antigen at 38.5 degrees C. We report the isolation of a tsA1499 revertant (tsA1499-Rev) which is no longer temperature sensitive for lytic growth but still contains the 81-base-pair deletion of tsA1499. Marker rescue experiments with tsA1499-Rev or wild-type strain 830 (wt830) DNAs revealed that the original tsA1499 mutant contained a second mutation within the HindIII-Fnu4HI restriction fragment between 0.425 and 0.484 map units. Sequencing of this DNA fragment from the tsA1499, tsA1499-Rev, and wt830 viruses revealed that tsA1499 contained a single-base transversion (C to G) at 0.455 map units (nucleotide 4261). This transversion resulted in the creation of a new RsaI cleavage site in the tsA1499 DNA and predicts an arginine-to-threonine substitution at amino acid position 186 in the mutant large T antigen. The DNA sequence of the tsA1499-Rev HindIII-Fnu4HI fragment was identical to that of wt830. To determine whether tsA1499 was temperature sensitive for lytic growth solely as a result of the newly discovered point mutation or because of a combination of the point and deletion mutations, a series of viruses were constructed which contained the point mutation, the deletion mutation, both mutations, or neither. This was done by ligating the PstI A and B DNA fragments from either tsA1499 or wt830 and transfecting the ligated DNA into BSC-1H monkey kidney cells. This experiment revealed that all viruses containing the point mutation (the tsA1499 PstI A DNA fragment) were temperature sensitive for lytic growth, regardless of the presence of the 81-base-pair deletion (the tsA1499 PstI B DNA fragment). This newly discovered point mutation, at nucleotide 4261, is therefore unique, since to our knowledge it is the first tsA mutation to be described in the 0.455-map-unit region of the SV40 genome. We then tested the effect of this unique mutation on the ability of the SV40 virus to transform cultured rat cells to anchorage independence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We examined the effects of large T antigen of simian virus 40 (SV40) on the proliferation phenotypes of temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts, which cease proliferating in the G1 phase of the cell cycle at a restrictive temperature (39.8 degrees C). Four ts mutants, each representing independent complementation groups, were transformed with the dl-884 mutant of SV40 which lacks the unique coding region for small t antigen. In the case of two ts mutants, their transformed derivatives did not cease proliferation at 39.8 degrees C. In the other two mutants, the transformed cells continued to enter the S phase but the cells became detached from the dishes thereafter, at 39.8 degrees C. The proliferation phenotypes of the dl-884-transformed cells at 39.8 degrees C were quite similar with those of the same mutants transformed with the wild-type SV40. These results indicate that large T antigen alone is sufficient to overcome the inhibition of cellular entry into S phase caused by four different ts defects and determines the proliferation phenotypes of the cells after entering the S phase at a restrictive temperature, and that small t antigen does not alter the cellular phenotypes determined by large T antigen.  相似文献   

15.
16.
17.
Mouse macrophages transformed by a temperature-sensitive mutant (tsA640) of simian virus 40 (SV40) were examined by immunofluorescence microscopy for fibronectin expression and actin distribution. Resting cultures of tsA640 transformants incubated at a temperature nonpermissive for SV40 large T antigen (39.0 degrees C) exhibited phagocytic activity and did not exhibit cellular fibronectin and actin cables, like primary cultures of resident macrophages. When the resting cultures were sparsely seeded and shifted down to the permissive temperature of 33.0 degrees C, expression of large T antigen in the nucleus, expression of fibronectin in the cytoplasm, and cellular entry into S phase occurred in that temporal order, followed by actin cable formation, cellular proliferation, and diminishment of phagocytic activity. The expression of T antigen and fibronectin was sensitive to actinomycin D and cycloheximide. The expression of fibronectin was insensitive to inhibitors of DNA synthesis, whereas the expression of actin cables was sensitive. These results suggest that SV40 T antigen leads macrophages to express fibronectin and actin cables, as well as resumption of cell proliferation, and that entry into S phase is not required for fibronectin expression but may be required for actin cable formation.  相似文献   

18.
We have used immunofluorescence in parallel with transmission and scanning electron microscopy to characterize the unusual cytoplasmic and nucleolar accumulation of Simian virus 40 (SV40) virion protein (C antigen) at restrictive temperatures (39 to 41 C) in monkey cells infected with a temperature-sensitive mutant of SV40 defective in virion assembly, tsB11. Cytoplasmic and nucleolar accumulation of C antigen did not occur in wild-type-infected cells at any temperature. Wild-type- and tsBll-infected cells were not distinguishable at 33 C by immunofluorescence or electron microscopy. Temperature-shift experiments using metabolic inhibitors of DNA (cytosine arabinonucleoside, 20 mug/ml), RNA (actinomycin D, 5 mug/ml), and protein synthesis (cycloheximide, 2 x 10(-4) to 10 x 10(-4) M) were used to investigate the requirements for ongoing DNA, RNA, and protein synthesis in the distribution of virion protein between the nucleus, nucleolus, and cytoplasm. The transport of C antigen from the nucleolus and cytoplasm into the nucleus was complete after a temperature shift-down (41 and 39 to 33 C). Limited virus particle formation occurred after the shift-down in the presence of actinomycin D and cycloheximide, indicating some of the 39 to 41 C synthesized virion protein could be used for capsid assembly at 33 C in the absence of further virion protein synthesis. Nucleolar and cytoplasmic accumulations of C antigen occurred in the absence of drugs after a shift-up (33 to 39 C and 41 C) indicating a continuous requirement for the tsB11 mutant function. Furthermore, the virion protein synthesized at 33 C remained confined to the nucleus when the cells were shifted to 39 and 41 C in the presence of actinomycin D or cycloheximide. In the presence of cytosine arabinonucleoside, however, the virion protein accumulated in large aggregates in the nucleus and nucleolus after the shift-up, but did not migrate into the cytoplasm as it did in drug-free tsB11-infected control cells. Colchicine (10(-3) M) had no effect on the abnormal accumulation of C antigen during shift-up or shift-down experiments suggesting that microtubular transport plays little if any role in the abnormal transport of tsB11 virion protein from cytoplasm to nucleus. Although virus particles were never observed by electron microscopy and V antigen was not detected by immunofluorescence at 39 or 41 C in tsB11-infected cells, dense amorphous accumulations were formed in the nucleoli and cytoplasm. We suggest that the tsB11 function is continuously required for the normal transport of SV40 virion protein between the cytoplasm, nucleolus, and nucleus and for the assembly of capsids and virions. Several possible mechanisms for the altered tsB11 function or protein are discussed. One of the virion proteins may also be involved in some presently undetermined nucleolar function during SV40 productive infection.  相似文献   

19.
A possible role of the simian virus 40 T antigen in chromosome damages in transformed cells was examined. Two lines of Golden hamster embryonal fibroblasts, transformed by SV40 tsA30 and ts239 mutants (He30 and He239, respectively), were incubated at nonpermissive (40.5-41 degrees C) or permissive (33 degrees C) temperatures. Chromosome aberrations were registered in either subline after 3, 6, 9 and 12 weeks of cultivation under the above conditions. In the both cell lines kept at 33 degrees the frequency of aberrant metaphases and the number of chromosome breaks per cell increased drastically by week 3 of cultivation, and such a state was preserved up to week 12. The frequency of aberrant metaphases in cells cultivated at 41 degrees was maintained at the constant level (He239) or at slightly higher than that in the original culture (He30). The sublines He239, originally incubated at 33 or 40.5 degrees, were then shifted to 40.5 and 33 degrees, respectively. As a result the number of chromosome aberrations either decreased (33----40.5 degrees) or increased (40.5----33 degrees) as early as on day 2, and these patterns were stabilized at the level corresponding to the new conditions. We assayed the induction of DNA breaks in cells, grown at the permissive or nonpermissive temperatures, by using DNA sedimentation in the alkaline sucrose gradient. The DNA sedimentation peaks of cells cultured at 37 and 41 degrees coincided, whereas the DNA of cells cultured at 33 degrees was represented by shorter fragments.  相似文献   

20.
We have transduced adult human alveolar bone (AB) cells with a gene construct encoding a temperature-sensitive mutation of the SV40 large T antigen (tsT). Such cells divided rapidly, for more than 50 passages thus far, at a permissive low temperature (34.5 degrees C), comparable to the non-transduced parental cells at 37 degrees C. However, the tsT-transduced AB cells failed to grow at a non-permissive high temperature (39 degrees C) at which the T antigen is inactivated. Nevertheless, the cells formed mineralised nodules in vitro at both the low and high temperatures. Flow cytometry analysis showed that the transduced cells cultured at 34.5 degrees C, like the parental cells at 37 degrees C, were smaller and less granular than the transduced cells incubated at 39 degrees C. Moreover, the transduced cells grown at 34.5 degrees C were also found to express bone sialoprotein, osteopontin and type I collagen at levels similar to those of the parental cells at 37 degrees C, although osteonectin and fibronectin were down-regulated. When the transduced cells were incubated at 39 degrees C, the expression of all antigens was up-regulated, particularly osteonectin. Thus, we have obtained long-term cultures of tsT-transduced AB cells whose growth is temperature-dependent and which express certain features characteristic of bone-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号