首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
4.
5.
6.
Shigella flexneri causes a severe form of bacillary dysentery also known as shigellosis. Onset of shigellosis requires bacterial invasion of colonic epithelial cells which is initiated by the delivery of translocator and effector proteins to the host cell membrane and cytoplasm, respectively, by the Shigella type III secretion system (TTSS). The Shigella translocator proteins, IpaB and IpaC, form a pore complex in the host cell membrane to facilitate effector delivery; however, prior to their secretion IpaB and IpaC are partitioned in the bacterial cytoplasm by association with the cytoplasmic chaperone IpgC. To determine their structural and biophysical properties, recombinant IpaB/IpgC and IpaC/IpgC complexes were prepared for their first detailed in vitro analysis. Both IpaB/IpgC and IpaC/IpgC complexes are highly stable and soluble heterodimers whose formation prevents IpaB-IpaC interaction as well as Ipa-dependent disruption of phospholipid membranes. Circular dichroism spectroscopy shows that IpgC binding has a detectable influence on IpaC secondary/tertiary structure and stability. In contrast, IpaB structure is not as dramatically affected by chaperone binding. To more precisely ascertain the influence of chaperone binding on IpaC structure and stability, single tryptophan mutants were generated for detailed fluorescence spectroscopy analysis. These mutants provide a low-resolution picture of how IpaC exists in the Shigella cytoplasm with chaperone binding possibly involving distinct regions within the N- and C-terminal halves of IpaC. This preliminary assessment of the IpaC-IpgC interaction is supported by initial deletion mutagenesis studies. The data provide the first structural analysis of IpgC association with IpaB and IpaC.  相似文献   

7.
The type III secretion (TTS) system of Gram-negative pathogenic bacteria is composed of proteins that assemble into the TTS machinery, proteins that are secreted by this machinery and specific chaperones that are required for storage and sometimes secretion of these proteins. Many sequential protein interactions are involved in the TTS pathway to deliver effector proteins to host cells. We used the yeast two-hybrid system to investigate the interaction partners of the Shigella flexneri effectors and chaperones. Libraries of preys containing random fusions with fragments of the TTS proteins were screened using effectors and chaperones as baits. Interactions between the effectors IpaB and IpaC and their chaperone IpgC were detected by this method, and interaction domains were identified. Using a His-tagged IpgC protein to co-purify truncated IpaB and IpaC proteins, we showed that the chaperone-binding domain was unique and located in the N-terminus of these proteins. This domain was not required for the secretion of recombinant proteins but was involved in the stability of IpaC and instability of IpaB. Homotypic interactions were identified with the baits IpaA, IpaB and IpaC. Interactions between effectors and components of the TTS machinery were also selected that might give insights into regulation of the TTS process.  相似文献   

8.
Invasion of epithelial cells by Shigella flexneri involves entry and dissemination. The main effectors of entry, IpaB and IpaC, are also required for contact haemolytic activity and escape from the phagosome in infected macrophages. These proteins are stored in the cytoplasm in association with the chaperone IpgC, before their secretion by a type III secretion apparatus is activated by host cells. We used a His-tagged IpgC protein to purify IpgC-containing complexes and showed that only IpaB and IpaC are associated with IpgC. Plasmids expressing His6-IpgC either alone or together with IpaB or IpaC under the control of an IPTG-inducible lac promoter were introduced into ipgC , ipaB or ipaC mutants. Induction of expression of the recombinant plasmid-encoded proteins by IPTG allowed bacteria to enter epithelial cells, and the role of these proteins in dissemination was investigated by incubating infected cells in either the absence or the presence of IPTG. The size of plaques produced by recombinant strains on cell monolayers was regulated by IPTG, indicating that IpgC, IpaB and IpaC were each required for efficient dissemination. Electron microscopy analysis of infected cells indicated that these proteins were necessary for lysis of the membrane of the protrusions during cell-to-cell spread.  相似文献   

9.
Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.  相似文献   

10.
Entry into host cells is an essential feature in the pathogenicity of Salmonella spp. The inv locus of Salmonella typhimurium encodes several proteins which are components of a type III protein secretion system required for these organisms to gain access to host cells. We report here the identification of several proteins whose secretion into the culture supernatant of S. typhimurium is dependent on the function of the inv-encoded translocation apparatus. Nucleotide sequence analysis of the genes encoding two of these secreted proteins, SipB and SipC, indicated that they are homologous to the Shigella sp. invasins IpaB and IpaC, respectively. An additional gene was identified, sicA, which encodes a protein homologous to IpgC, a Shigella protein that serves as a molecular chaperone for the invasins IpaB and IpaC. Nonpolar mutations in sicA, sipB, and sipC rendered S. typhimurium unable to enter cultured epithelial cells, indicating that these genes are required for bacterial internalization.  相似文献   

11.
Shigella flexneri uses its type III secretion system (T3SS) to promote invasion of human intestinal epithelial cells as the first step in causing shigellosis, a life-threatening form of dysentery. The Shigella type III secretion apparatus (T3SA) consists of a basal body that spans the bacterial envelope and an exposed needle that injects effector proteins into target cells. The nascent Shigella T3SA needle is topped with a pentamer of the needle tip protein invasion plasmid antigen D (IpaD). Bile salts trigger recruitment of the first hydrophobic translocator protein, IpaB, to the tip complex where it senses contact with a host membrane. In the bacterial cytoplasm, IpaB exists in a complex with its chaperone IpgC. Several structures of IpgC have been determined, and we recently reported the 2.1 ? crystal structure of the N-terminal domain (IpaB(74.224)) of IpaB. Like IpgC, the IpaB N-terminal domain exists as a homodimer in solution. We now report that when the two are mixed, these homodimers dissociate and form heterodimers having a nanomolar dissociation constant. This is consistent with the equivalent complexes copurified after they had been co-expressed in Escherichia coli. Fluorescence data presented here also indicate that the N-terminal domain of IpaB possesses two regions that appear to contribute additively to chaperone binding. It is also likely that the N-terminus of IpaB adopts an alternative conformation as a result of chaperone binding. The importance of these findings within the functional context of these proteins is discussed.  相似文献   

12.
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. In addition to a functional TTS apparatus, secretion of effector proteins depends upon specific chaperones. Using a two-hybrid screen in yeast and a co-purification assay in Shigella flexneri, we demonstrated that Spa15, which is encoded by an operon for components of the TTS apparatus, is associated in the cytoplasm with three proteins that are secreted by the TTS pathway, IpaA, IpgB1 and OspC3. Spa15 was found to be necessary for stability of IpgB1 but not IpaA, and for secretion of IpaA molecules that were stored in the cytoplasm but not those that were synthesized while the secretion apparatus was active. The ability of Spa15 to associate with several non-homologous secreted proteins, the presence of Spa15 homologues in other TTS systems and the location of the corresponding genes within operons for components of the TTS apparatus suggest that Spa15 belongs to a new class of TTS chaperones.  相似文献   

13.
The chaperone IpgC copurifies with the virulence regulator MxiE   总被引:1,自引:0,他引:1  
The expression of a subset of Shigella flexneri virulence genes is dependent upon a cytoplasmic chaperone, IpgC, and an activator from the AraC/XylS family, MxiE. In this paper, we report that the chaperone forms a specific and stable heteromer with MxiE.  相似文献   

14.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   

15.
Shigella spp. are the causative agent of shigellosis, the second leading cause of diarrhea in children of ages 2–5. Despite many years of research, a protective vaccine has been elusive. We recently demonstrated that invasion plasmid antigens B and D (IpaB and IpaD) provide protection against S. flexneri and S. sonnei. These proteins, however, have very different properties which must be recognized and then managed during vaccine formulation. Herein, we employ spectroscopy to assess the stability of IpaB as well as IpgC (invasion protein gene), IpaB's cognate chaperone, and the IpaB/IpgC complex. The resulting data are mathematically summarized into a visual map illustrating the stability of the proteins and their complex as a function of pH and temperature. The IpaB/IpgC complex exhibits thermal stability at higher pH values but, though initially stable, quickly unfolds with increasing temperature when maintained at lower pH. In contrast, IpaB is a much more complex protein exhibiting increased stability at higher pH, but shows initial instability at lower pH values with pH 5 showing a distinct transition. IpgC precipitates at and below pH 5 and is stable above pH 7. Most strikingly, it is clear that complex formation results in stabilization of the two components. This work serves as a basis for the further development of IpaB as a vaccine candidate as well as extends our understanding of the structural stability of the Shigella type III secretion system.  相似文献   

16.
Entry of Shigella flexneri into epithelial cells and lysis of the phagosome involve the IpaB, IpaC, and IpaD proteins, which are secreted by type III secretion machinery. We report here the purification of IpaB and IpaD and the characterization of their lipid-binding properties as a function of pH. The interaction of IpaB with the membrane was quite independent of the pH whereas that of IpaD took place only at low pH. To support the data obtained with the purified proteins, we designed a system in which protein secretion by live bacteria was induced in the presence of liposomes, thereby allowing interaction of proteins with lipids directly after secretion and bypassing any purification step. In these conditions, both IpaB and IpaC, as well as minor amounts of IpaA and IpgD, were associated with the membrane and the ratio of IpaB to IpaC was modulated by the pH. The relevance of these results with respect to the dual roles of IpaB, IpaC and IpaD in induction of membrane ruffles and lysis of the endosomal membrane is discussed.  相似文献   

17.
Type III secretion (TTS) is an essential virulence function for Shigella flexneri that delivers effector proteins that are responsible for bacterial invasion of intestinal epithelial cells. The Shigella TTS apparatus (TTSA) consists of a basal body that spans the bacterial inner and outer membranes and a needle exposed at the pathogen surface. At the distal end of the needle is a "tip complex" composed of invasion plasmid antigen D (IpaD). IpaD not only regulates TTS, but is required for the recruitment and stable association of the translocator protein IpaB at the TTSA needle tip in the presence of deoxycholate or other bile salts. This phenomenon is not accompanied by induction of TTS or the recruitment of IpaC to the Shigella surface. We now show that IpaD specifically binds fluorescein-labeled deoxycholate and, based on energy transfer measurements and docking simulations, this interaction appears to occur where the N-terminal domain of IpaD meets its central coiled-coil, a region that may also be involved in needle-tip interactions. TTS is initiated as a series of distinct steps and that small molecules present in the bacterial milieu are capable of inducing the first step of TSS through interactions with the needle tip protein IpaD. Furthermore, the amino acids proposed to be important for deoxycholate binding by IpaD appear to have significant roles in regulating tip complex composition and pathogen entry into host cells.  相似文献   

18.
Type III secretion (TTS) systems are used by many Gram-negative pathogens to inject virulence proteins into the cells of their hosts. Several of these virulence effectors require TTS chaperones that maintain them in a secretion-competent state. Whereas most chaperones bind only one effector, Spa15 from the human pathogen Shigella flexneri and homologous chaperones bind several seemingly unrelated effectors, and were proposed to form a special subgroup. Its 1.8 A crystal structure confirms this specific classification, showing that Spa15 has the same fold as other TTS effector chaperones, but forms a different dimer. The presence of hydrophobic sites on the Spa15 surface suggests that the different Spa15 effectors all possess similar structural elements that can bind these sites. Furthermore, the Spa15 structure reveals larger structural differences between class I chaperones than previously anticipated, which does not support the hypothesis that chaperone-effector complexes are structurally conserved and function as three-dimensional secretion signals.  相似文献   

19.
Type III secretion (T3S) systems are key features of many gram-negative bacteria that translocate T3S effector proteins directly into eukaryotic cells. There, T3S effectors exert many effects, such as cellular invasion or modulation of host immune responses. Studying spatiotemporal orchestrated secretion of various effectors has been difficult without disrupting their functions. Here we developed a new approach using Shigella flexneri T3S as a model to investigate bacterial translocation of individual effectors via multidimensional time-lapse microscopy. We demonstrate that direct fluorescent labeling of tetracysteine motif-tagged effectors IpaB and IpaC is possible in situ without loss of function. Studying the T3S kinetics of IpaB and IpaC ejection from individual bacteria, we found that the entire pools of IpaB and IpaC were released concurrently upon host cell contact, and that 50% of each effector was secreted in 240 s. This method allows an unprecedented analysis of the spatiotemporal events during T3S.  相似文献   

20.
R Ménard  P Sansonetti    C Parsot 《The EMBO journal》1994,13(22):5293-5302
Shigella species are enteropathogens that invade epithelial cells of the human colon. Entry into epithelial cells is triggered by the IpaB, IpaC and IpaD proteins which are translocated into the medium through the specific Mxi-Spa machinery. In vitro, Shigella cells secrete only a small fraction of the Ipa proteins, the majority of which remains in the cytoplasm. We show here that upon interaction with cultured epithelial cells or in the presence of fetal bovine serum, S.flexneri release pre-synthesized Ipa molecules from the cytoplasm into the environment. Evidence is presented that IpaB and IpaD are essential for both blocking secretion through the Mxi-Spa translocon in the absence of a secretion-inducing signal and controlling secretion of the Ipa proteins in the presence of a signal. Subcellular localization and analysis of the molecular interactions of the Ipa proteins indicate that IpaB and IpaD associate transiently in the bacterial envelope. We propose that IpaB and IpaD, by interacting in the secretion apparatus, modulate secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号