首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary One foreleg was amputated at mid-femur in adultGryllus bimaculatus females. In phonotaxis tests these monaural crickets show course deviations and circling towards the intact side (Fig. 1). Mean course stability is best at 60 and 70 dB (Fig. 2). Here it differs significantly from a threshold value for orientated walking in females operated on the day of adult moult, but not in those operated two weeks later. The orientational performance improves with the interval between amputation and test (Fig. 3).Centripetal cobalt backfills reveal degeneration of tympanal nerve fibers on the amputated side (Fig. 4B, C). The mean number of intact afferents crossing the midline of the prothoracic ganglion is increased in monaural versus binaural crickets. Maximum transmidline extension is not correlated with the period of deafferentation (Fig. 5).Intracellular recording and staining of prothoracic auditory interneurons shows some axonal sprouts in ON1i (intact side) and ON2, but no significant physiological changes (Figs. 6A, D; 8A, C, E, G). Apart from axonal sprouts ON1a (amputated side) may show a few dendritic sprouts into the intact auditory neuropil (Figs. 6C, 7). Excitation in some ON1a-cells reveals functional contacts to intact auditory afferents (via crossing dendrites or possibly crossing afferents, Figs. 6e, 7, 8F). Morphological and associated physiological changes start early in AN2a (amputated side). The degree of crossing dendrites and contralateral excitation increases with postoperative age (Figs. 8H, 9).  相似文献   

2.
Deafferentation experiments during postembryonic development show morphological and/or physiological changes of receptor fibers and of identified auditory interneurons in the CNS of the locusts Locusta migratoria and Schistocerca gregaria after unilateral ablation of one tympanic organ either in the larva or the adult animal.
1.  In Locusta migratoria, 5 days after deafferentation, intact, contralateral receptor fibers had sprouted collaterals in the frontal acoustic neuropil of the metathoracic ganglion (Figs. 1, 2). Collateral sprouts were only rarely found in Schistocerca gregaria.
2.  After about 20 days the deafferented auditory interneurons receive new inputs from the contralateral receptors (Figs. 3, 5, 7, 10). This largely restores their thresholds and intensity/response functions. Collaterals from the first order interneurons cross the midline to the contralateral neuropil (BSN1 neuron, Fig. 4), which is never seen in intact animals. By contrast, in the TN1 neuron no consistent morphological change due to the deafferentation could be found (Fig. 6).
3.  Interneurons of higher order (AN1, TN3 neuron in locusts) regain their response pattern (Fig. 7) without morphological changes (Fig. 9). Bilateral recordings show that the deafferented interneurons respond more weakly to auditory stimuli than the intact neuron, but the response to vibration stimuli remains unchanged (TN3 neuron, Fig. 8).
  相似文献   

3.
Auditory/vibratory interneurones of the bushcricket species Decticus albifrons and Decticus verrucivorus were studied with intracellular dye injection and electrophysiology. The morphologies of five physiologically characterised auditory/vibratory interneurones are shown in the brain, subesophageal and prothoracic ganglia. Based on their physiology, these five interneurones fall into three groups, the purely auditory or sound neurones: S-neurones, the purely vibratory V-neurones, and the bimodal vibrosensitive VS-neurones. The S1-neurones respond phasically to airborne sound whereas the S4-neurones exhibit a tonic spike pattern. Their somata are located in the prothoracic ganglion and they show an ascending axon with dendrites located in the prothoracic, subesophageal ganglia, and the brain. The VS3-neurone, responding to both auditory and vibratory stimuli in a tonic manner, has its axon traversing the brain, the suboesophageal ganglion and the prothoracic ganglion although with dendrites only in the brain. The V1- and V2-neurones respond to vibratory stimulation of the fore- and midlegs with a tonic discharge pattern, and our data show that they receive inhibitory input suppressing their spontaneous activity. Their axon transverses the prothoracic ganglion, subesophageal ganglion and terminate in the brain with dendritic branching. Thus the auditory S-neurones have dendritic arborizations in all three ganglia (prothoracic, subesophageal, and brain) compared to the vibratory (V) and vibrosensitive (VS) neurones, which have dendrites almost only in the brain. The dendrites of the S-neurones are also more extensive than those of the V-, VS-neurones. V- and VS-neurones terminate more laterally in the brain. Due to an interspecific comparison of the identified auditory interneurones the S1-neurone is found to be homologous to the TN1 of crickets and other bushcrickets, and the S4-neurone also can be called AN2. J. Exp. Zool. 286:219-230, 2000.  相似文献   

4.
Summary In the fly, Calliphora erythrocephala, a cluster of three Y-shaped descending neurons (DNOVS 1–3) receives ocellar interneuron and vertical cell (VS4–9) terminals. Synaptic connections to one of them (DNOVS 1) are described. In addition, three types of small lobula plate vertical cell (sVS) and one type of contralateral horizontal neuron (Hc) terminate at DNOVS 1, as do two forms of ascending neurons derived from thoracic ganglia. A contralateral neuron, with terminals in the opposite lobula plate, arises at the DNOVS cluster and is thought to provide heterolateral interaction between the VS4–9 output of one side to the VS4–9 dendrites of the other. DNOVS 2 and 3 extend through pro-, meso-, and metathoracic ganglia, branching ipsilaterally within their tract and into the inner margin of leg motor neuropil of each ganglion. DNOVS 1 terminates as a stubby ending in the dorsal prothoracic ganglion onto the main dendritic trunks of neck muscle motor neurons. Convergence of VS and ocellar interneurons to DNOVS 1 comprises a second pathway from the visual system to the neck motor, the other being carried by motor neurons arising in the brain. Their significance for saccadic head movement and the stabilization of the retinal image is discussed.  相似文献   

5.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   

7.
Abstract In response to model calling songs (CSs), the phonotaxis of female Acheta domesticus ranges from being very selective to unselective. Within 15 min of nanoinjecting juvenile hormone III (JHIII) or picrotoxin (PTX) into the prothoracic ganglion, females become more selective for syllable period (SP) than in pre‐tests. Controls for JHIII experiments, including nanoinjection of acetone into the prothoracic ganglion or nanoinjection of JHIII into the metathoracic ganglion, do not influence selectivity. Similarly, nanoinjection of saline into the prothoracic ganglion and nanoinjection of PTX outside of the prothoracic ganglion does not change the overall selectivity of the female’s phonotaxis. These results indicate that circuits in the prothoracic ganglion modulate the SP‐selectivity of phonotaxis. Photoinactivating both of the ON1 prothoracic auditory interneurones in old females that were previously unselective for SP also results in greater SP‐selectivity during phonotaxis. Evidence suggesting that ON1 has this effect via its inhibitory input to L3 (another prothoracic auditory neurone) includes: photoinactivation of one ON1 neurone causes angular errors in the female’s orientation to CSs at 85 dB (above the threshold of the L3), stimulation with 60 dB CSs (above the threshold of ON1 but below the threshold of L3) does not induce errors in angular orientation, inactivation of ON1 in old crickets results in greater angular errors (85 dB stimulus) than it does when ON1 is inactivated in young females, and photoinactivation of ON1 increases the firing rate of the L3 neurone.  相似文献   

8.
Nervous systems are capable of structural adjustments. Such plastic changes also occur in the auditory system of the locust Schistocerca gregaria in which a deafferentation leads to compensatory mechanisms, such as collateral sprouting of interneurons. In this study we further investigated lesion related changes in the major auditory neuropil, the median ventral association center (mVAC) of the metathoracic ganglion. The auditory sensory organ of adult locusts was unilaterally extirpated and the mVAC was histologically and immunocytochemically analyzed until 20 days postoperative. Measurements of the neuropil area in transverse sections showed a decrease in size. The putative transmitter of the afferents, acetylcholine, was investigated by acetylcholinesterase histochemistry. Comparisons of staining intensities in the intact and deafferentated mVAC indicated that the amount of acetylcholinesterase in the deafferentated mVAC decreased shortly after the operation. Both, the decreases in size of the mVAC as well as that in acetylcholinesterase histochemistry were only less than 10% compared to the controls. The immunoreactivity against the neurotransmitters γ-amino butyric acid and serotonin was not influenced by the deafferentation.  相似文献   

9.
During metamorphosis of the moth, Manduca sexta, an identified leg motor neuron, the femoral extensor motor neuron (FeExt MN) undergoes dramatic reorganization. Larval dendrites occupy two distinct regions of neuropil, one in the lateral leg neuropil and a second in dorsomedial neuropil. Adult dendrites occupy a greater volume of lateral leg neuropil but do not extend to the dorsomedial region of the ganglion. The adult dendritic morphology is acquired by extreme dendritic regression followed by extensive dendritic growth. Towards the end of larval life, MN dendrites begin to regress, but the most dramatic loss of dendrites occurs in the 3 days following pupation, such that only a few sparse dendrites are retained in the lateral region of leg neuropil. Extensive dendritic growth occurs over the subsequent days such that the MN acquires an adult-like morphology between 12 and 14 days after pupation. This basic process of dendritic remodeling is not dependent upon the presence of the adult leg, suggesting that neither contact with the new target muscle nor inputs from new leg sensory neurons are necessary for triggering dendritic changes. The final distribution of MN dendrites in the adult, however, is altered when the adult leg is absent, suggesting that cues from the adult leg are involved in directing or shaping the growth of MN dendrites to specific regions of neuropil. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
In young virginAcheta domesticus females, the spiking response of the prothoracic L3 auditory interneuron discriminates between calling songs (CSs) with phonotactically attractive and unattractive syllable periods (SPs), which parallels phonotactic discrimination. Presentation of a CS with an originally attractive SP, but with the intensity modulated so as to minimize L3's selective response, results in a CS with little phonotactic attractiveness. Conversely, a CS with an originally unattractive SP becomes much more attractive when the CS is intensity modulated in ways that duplicate L3's selective response. L3's discriminatory response to CS SP deteriorates with age, in parallel with decreased phonotactic selectiveness (females, older than 14 days, typically are unselective for CS SPs). SP-selective processing, which was not apparent in these old L3s, is immediately restored by removing the contralateral ear. SP-specific information is resident in a network of neurons within the prothoracic ganglion that results in the SP selective responses of the L3 neuron in young females. Changes in the SP-selective responses of the L3 neuron are highly correlated with corresponding changes in the female's phonotactically selective behavior.  相似文献   

11.
Precision of synaptic connections within neural circuits is essential for the accurate processing of sensory information. Specificity is exemplified at cellular and subcellular levels in the chick auditory brainstem, where nucleus magnocellularis (NM) neurons project bilaterally to nucleus laminaris (NL). Dorsal dendrites of NL neurons receive input from ipsilateral, but not contralateral, branches of NM axons whereas ventral dendrites are innervated by contralateral NM axons. This organization is analogous to that of the mammalian medial superior olive (MSO) and represents an important component of the circuitry underlying sound localization. However, the molecular mechanisms that establish segregated inputs to individual regions of NL neurons have not been identified. During synapse formation in NL, the EphA4 receptor is expressed in dorsal, but not ventral NL, neuropil, suggesting a potential role in targeting synapses to appropriate termination zones. Here, we directly tested this role by ectopically expressing EphA4 and disrupting EphA4 signaling using in ovo electroporation. We found that both misexpression of EphA4 and disruption of EphA4 signaling resulted in an increase in the number of NM axons that grow aberrantly across NL cell bodies into inappropriate regions of NL neuropil. EphA4 signaling is thus essential for targeting axons to distinct subsets of dendrites. Moreover, loss of EphA4 function resulted in morphological abnormalities of NL suggestive of errors in cell migration. These results suggest that EphA4 has multiple roles in the formation of auditory brainstem nuclei and their projections.  相似文献   

12.
Various auditory interneurons of the duetting bush cricket Ancistrura nigrovittata with axons ascending to the brain are presented. In this species, more intersegmental sound-activated neurons have been identified than in any other bush cricket so far, among them a new type of ascending neuron with posterior soma in the prothoracic ganglion (AN4). These interneurons show not only morphological differences in the prothoracic ganglion and the brain, but also respond differently to carrier frequencies, intensity and direction. As a set of neurons, they show graded differences for all of these parameters. A response type not described among intersegmental neurons of crickets and other bush crickets so far is found in the AN3 neuron with a tonic response, broad frequency tuning and little directional dependence. All neurons, with the exception of AN3, respond in a relatively similar manner to the temporal patterns of the male song: phasically to high syllable repetitions and rhythmically to low syllable repetitions. The strongest coupling to the temporal pattern is found in TN1. In contrast to behavior the neuronal responses depend little on syllable duration. AN4, AN5 and TN1 respond well to the female song. AN4 (at higher intensities) and TN1 respond well to a complete duet.  相似文献   

13.
SYNOPSIS. Phonotaxis by female crickets to the calling songof males, is an important model for investigating the neuralbasis of auditory behavior. Recent advances make it possibleto explain some components of this behavior and its hormonalcontrol, at the level of identified neurons and molecular expressionwithin those neurons Tonotopically arranged afferents from the cricket's ear, projectto local and intersegmental prothoracic interneurons. Bilateralprocessing of signals and some temporal-pattern specific processingoccurs in the prothoracic ganglion and influences acoustic informationthat is sent to the brain via ascending interneurons that aredemonstrably involved in phonotaxis. High, low and band- passinterneurons in the brain continue temporal pattern processingwhich matches the selectivity of phonotaxis and may be filtersfor recognition of the calling song. Neurons descending fromthe brain and prothoracic ganglion, direct multimodal signals(including auditory) to more posterior regions, possibly theleg motor neurons that are responsible for phonotaxis Age-related changes or artificially induced changes in JuvenileHormone III levels regulate the threshold for phonotaxis inAcheta domesticus, by varying the threshold of LI, a prothoracicascending interneuron that is necessary for phonotaxis to lowintensity calling songs. Results from in situ hybridizationsuggest that this might be accomplished, in part, by controllingthe levels of nicotinic acetylcholine receptor-like mRNA expressedin LI, presumably by increasing its neurotransmitter receptordensity. L3 is a prothoracic ascending interneuron that exhibitsbandselective response properties to the syllable period ofthe calling song. L3's response is age and JHIII related, andis correlated to phonotactic selectivity. These changes in L3might be accomplished, at least in part by JHIII regulatingthe expression of nicotinic acetylcholine receptor-like mRNAin L3  相似文献   

14.
L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate.  相似文献   

15.
We have examined expression of T alpha 1 alpha-tubulin mRNA in the rat superior cervical ganglion (SCG) to determine whether changes in gene expression accompany neuronal sprouting and to investigate factors that regulate growth-associated genes in intact neurons. Northern blot analysis demonstrates that levels of T alpha 1 alpha-tubulin mRNA increase in the uninjured SCG following transection of contralateral neurons that project to bilaterally innervated, but not unilaterally innervated target organs. The observed increase in uninjured neurons is associated with collateral sprouting, as measured by increased tyrosine hydroxylase immunoreactivity within the pineal gland. These data suggest that target-derived factors may regulate T alpha 1 mRNA in sprouting neurons. Consistent with this hypothesis, systemic NGF treatment of neonatal animals over a developmental interval when T alpha 1 alpha-tubulin mRNA normally decreases led to a 5- to 10-fold increase in T alpha 1 mRNA levels in developing sympathetic neurons. In addition, deafferentation of the SCG, which promotes neuronal sprouting in the ganglion, increases T alpha 1 mRNA in ganglia on the ipsilateral and contralateral sides. Together, these data demonstrate that T alpha 1 alpha-tubulin mRNA elevates as a function of neuronal sprouting, and that T alpha 1 mRNA expression in intact neurons can be regulated by extrinsic cues, including NGF and changes in connectivity.  相似文献   

16.
Microelectrode recording and microstimulation (in 1 case macrostimulation) were used to localize stereotactic targets in 8 patients with central and deafferentation pain and 1 'deafferented control' patient without pain. Off-line study revealed two features commonly proposed as potential physiological factors for such pain, but they were present in both pain and control patients--somatotopographic reorganization and the presence of bursting cells. In all patients in whom stimulation induced pain referred to deafferented parts of the contralateral body, hyperpathia or allodynia were present instead of normal paraesthetic, sensorimotor or thermal responses.  相似文献   

17.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

18.
Intracellular recordings were made in the brain of the cricket Gryllus bimaculatus from an ascending auditory interneuron (AN1). Acoustic stimuli with calling song temporal pattern were delivered via earphones in a preparation with the acoustic trachea cut (attenuation of crossing sound > 30 dB). The input-output function of this cell was then determined by recording its responses to stimulation of the ipsilateral ear alone, of the contralateral ear alone and to stimulation of both ears simultaneously with the same or different carrier frequencies and intensities.This interneuron was excited by the ear ipsilateral to its axon and dendritic field and unresponsive to stimuli presented to the axon-contralateral ear alone. However, in binaural stimulation experiments, the response to a constant ipsilateral stimulus was progressively reduced as the intensity of a simultaneous contralateral stimulus was increased, above a threshold intensity.Tuning curves for threshold of this inhibition, determined in binaural stimulation experiments, indicated significant inhibition in the range 3–20 kHz with lowest threshold at 4–5 kHz. The inhibition was unaffected by sectioning of the contralateral circumoesophageal or neck connective, indicating that the inhibitory influence crosses the midline at the level of the prothoracic ganglion. Intracellular recordings from AN1 in the prothoracic ganglion confirmed that it was indeed neurally inhibited by inputs from the contralateral ear.Tuning curves for excitation of an omega neuron (ON1) by the ear ipsilateral to its soma and also the tuning of inhibition of ON1 by its contralateral ON1 partner, closely match the tuning of inhibition of AN1 and to a lesser extent, of AN2. This was taken as evidence that each AN1 is inhibited by the contralateral ON1. The significance of this interaction for directional hearing and phonotaxis is discussed.Abbreviations AP/CHP action potentials per chirp - AN1, AN2 ascending auditory interneurons 1, 2 - ON1 omega neuron 1 - ipsi ipsilateral contra contralateral - PTG prothoracic ganglion loc lateral ocellar nerve - On optic nerve an antennal nerve - coc circum-oesophageal connective so sound off  相似文献   

19.
Careful review of the literature demonstrates conflicting results concerning the ability of the deafferented medial basal hypothalamus to support gonadotropin release in the rat and thus one may question the existence of LH-RH neurons in the medial basal hypothalamus. The direct search for the LH-RH perikarya in the rat hypothalamus has not settled the question of whether these releasing hormone neurons are located in the medial basal hypothalamus. Most investigators do agree that following complete hypothalamic deafferentation there is a reduction of the immunoassayable LH-RH in the medial basal hypothalamus; however, these results do not necessarily prove that LH-RH originates outside the hypothalamus. It is argued that the completely deafferented medial basal hypothalamus may be so altered by the deafferentation procedure that it may be inadequate as a means to study neuroendocrine function.  相似文献   

20.
Nanoinjection of Juvenile Hormone III (JH III) into the prothoracic ganglion causes virgin female crickets Gryllus bimaculatus De Geer to become more phonotactically selective for the syllable periods (SPs) of model calling songs. Females responding to all, or almost all, of the SPs presented before JH III injection significantly narrow their responses to a range of SPs that is usually centered on the SPs included in the conspecific males' calling song. Control injections of acetone (i.e. the solvent for JH III) into the prothoracic ganglion do not significantly change the recipient females' phonotactic responses. Injection of JH III into the metathoracic ganglion also has no effect the females' phonotactic choices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号