首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in gene expression may lead to cellular adaptation of water-deficit stress, yet all of the induced mRNAs may not play this role. Changes in gene expression must be signalled by transduction mechanisms that first sense a water deficit. This first step triggers changes in gene expression that function to synthesize additional signals such as abscisic acid (ABA). The enzymes involved in ABA biosynthesis have been cloned and their regulation during water-deficit stress is being characterized. Once ABA levels are increased, further signalling mechanisms are initiated to signal new gene expression patterns that are proposed to play a role in cellular adaptation to water-deficit stress. As the genome of Arabidopsis is now completed, much more information can be exploited to characterize these responses.  相似文献   

3.
Droopy: a wilty mutant of potato deficient in abscisic acid   总被引:3,自引:1,他引:2  
Abstract. Droopy mutant of potato ( Solanum tubero-sum L., group Pliureja ) wilts because of excessive stomatal opening (Waggoner & Simmonds, 1966). Progeny of the cross between potato clones C.P.C. 4461 and C.P.C. 4463 showed characteristics similar to those of the original droopy potato. These plants wilted at high vapour pressure deficit and their stomatal conductances in the light and the dark were higher than those of normal plants. Conductances were reduced by applied abscisic acid (ABA), but stomata remained partially open even when guard cells were plasmolysed. Leaves of droopy plants accumulated very little ABA when water-stressed.  相似文献   

4.
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED.  相似文献   

5.
We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. β-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.  相似文献   

6.
We have investigated the relationship between seed dormancy and abscisic acid (ABA) metabolism in the monocot barley and the dicot Arabidopsis. Whether dormant (D) or non-dormant (ND), dry seed of Arabidopsis and embryos of dry barley grains all had similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene expression profiles were determined in Arabidopsis for key ABA biosynthetic [the 9-cis epoxycarotenoid dioxygenasegene family] and ABA catabolic [the ABA 8'-hydroxylase gene family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being expressed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was expressed to a much higher level in embryos from ND grains than from D grains. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in embryos from ND grains. Surprisingly, the signal was confined in the coleorhiza, suggesting that this tissue plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis resulted in decreased ABA content in mature dry seeds and a much shorter after-ripening period to overcome dormancy. Conversely, mutating the CYP707A2 gene resulted in seeds that required longer after-ripening to break dormancy. Our results point to a pivotal role for the ABA 8'-hydroxylase gene in controlling dormancy and that the action of this enzyme may be confined to a particular organ as in the coleorhiza of cereals.  相似文献   

7.
Polypeptide synthesis and accumulation were examined in the roots of tomato seedlings exposed to a polyethylene glycol‐imposed water deficit stress. In these roots, the synthesis of a number of polypeptides was induced, while that of several others was enhanced or repressed. To examine the role played by abscisic acid (ABA) in co‐ordinating the accumulation of these proteins, water‐deficit‐stress‐responsive polypeptide synthesis was investigated in the roots of the ABA‐deficient mutant flacca. In the roots of this mutant, the ability to accumulate a complete set of water‐deficit‐stress‐responsive polypeptides was impaired, indicating that ABA is required for their synthesis. The role of ABA was further examined by exposing the roots of both genotypes to exogenous ABA, which, with one exception, elicited the accumulation of all water‐deficit‐stress‐responsive proteins. Polyethylene glycol‐induced polypeptide accumulation was accompanied by a 1·6‐fold increase in the level of endogenous ABA in the roots of wild‐type plants and a 5‐fold increase in the roots of flc. Thus, although the absolute level was lower than that of the wild‐type, flc has the capacity to accumulate ABA in its roots. When fluridone was used to prevent the biosynthesis of ABA, the accumulation of several water‐deficit‐stress‐responsive polypeptides was reduced further. The synthesis of polypeptides was also examined in the roots of salt‐treated seedlings. Salt altered the accumulation of several polypeptides, all of which were previously observed in water‐deficit‐stressed roots, indicating that their synthesis was the result of the osmotic component of the salt stress. However, the accumulation of these polypeptides was not impaired in flc roots, indicating that the role played by ABA in regulating their accumulation in salt‐and polyethylene glycol‐treated roots differs. As such, salt‐ and water‐deficit‐stress‐induced changes in gene expression may be effected by different mechanisms, at least at the level of polypeptide accumulation.  相似文献   

8.
The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48 h after wounding and remained elevated through 96 h. Wounding induced dramatic increases in the expression of the ABA metabolic genes encoding zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and ABA-8′-hydroxylase. Although the patterns of wound-induced expression of individual genes varied, increased gene expression was observed within 3 h of wounding and remained elevated through 96 h. An apparent correlation between expression of the gene encoding ZEP and the increase in ABA content suggested that the wound-induced increase in ABA biosynthesis was regulated by both substrate availability and increased NCED activity. Suppression of wound-induced jasmonic acid accumulation by rinsing the wounded tissue with water did not inhibit the subsequent increase in ABA content. Exogenous ethylene completely suppressed the wound-induced increase in ABA content and dramatically reduced wound-induced up-regulation of ABA metabolic genes. This study is the first to identify the molecular bases for increased ABA accumulation following physical trauma in potato tubers and highlights the complex physiological interactions between various wound-induced hormones.  相似文献   

9.
Salicylic acid (SA) applied at 10(-3) m in hydroponic culture decreased stomatal conductance (g(s)), maximal CO(2) fixation rate (A(max) ) and initial slopes of the CO(2) (A/C(i)) and light response (A/PPFD) curves, carboxylation efficiency of Rubisco (CE) and photosynthetic quantum efficiency (Q), resulting in the death of tomato plants. However, plants could acclimate to lower concentrations of SA (10(-7) -10(-4) m) and, after 3 weeks, returned to control levels of g(s), photosynthetic performance and soluble sugar content. In response to high salinity (100 mm NaCl), the pre-treated plants exhibited higher A(max) as a function of internal CO(2) concentration (C(i) ) or photosynthetic photon flux density (PPFD), and higher CE and Q values than salt-treated controls, suggesting more effective photosynthesis after SA treatment. Growth in 10(-7) or 10(-4) m SA-containing solution led to accumulation of soluble sugars in both leaf and root tissues, which remained higher in both plant parts during salt stress at 10(-4) m SA. The activity of hexokinase (HXK) with glucose, but not fructose, as substrate was reduced by SA treatment in leaf and root samples, leading to accumulation of glucose and fructose in leaf tissues. HXK activity decreased further under high salinity in both plant organs. The accumulation of soluble sugars and sucrose in roots of plants growing in the presence of 10(-4) m SA contributed to osmotic adjustment and improved tolerance to subsequent salt stress. Apart from its putative role in delaying senescence, decreased HXK activity may divert hexoses from catabolic reactions to osmotic adaptation.  相似文献   

10.
抑制ABA的生物合成可以缓解葡萄糖抑制拟南芥种子萌发作用,说明ABA的生物合成参与葡萄糖诱导种子萌发的延迟。ABA生物合成基因9-顺式环氧类胡萝卜素双加氧酶6(NCED6)可以被不同浓度的葡萄糖上调表达,而nced6突变体的种子对葡萄糖不敏感。  相似文献   

11.
Applications of chloroplast engineering in agriculture and biotechnology will depend critically on success in extending the crop range of chloroplast transformation, and on the feasibility of expressing transgenes in edible organs (such as tubers and fruits), which often are not green and thus are much less active in chloroplast gene expression. We have improved a recently developed chloroplast-transformation system for tomato plants and applied it to engineering one of the central metabolic pathways in fruits: carotenoid biosynthesis. We report that plastid expression of a bacterial lycopene beta-cyclase gene results in herbicide resistance and triggers conversion of lycopene, the main storage carotenoid of tomatoes, to beta-carotene, resulting in fourfold enhanced pro-vitamin A content of the fruits. Our results demonstrate the feasibility of engineering nutritionally important biochemical pathways in non-green plastids by transformation of the chloroplast genome.  相似文献   

12.
A key regulated step in abscisic acid (ABA) biosynthesis in plants is catalyzed by 9-cis epoxycarotenoid dioxygenase (NCED), which cleaves 9-cis xanthophylls to xanthoxin, a precursor of ABA. In Arabidopsis, ABA biosynthesis is controlled by a small family of NCED genes. Nine carotenoid cleavage dioxygenase (CCD) genes have been identified in the complete genome sequence. Of these, five AtNCEDs (2, 3, 5, 6, and 9) have been cloned and studied for expression and subcellular localization. Although all five AtNCEDs are targeted to plastids, they differ in binding activity of the thylakoid membrane. AtNCED2, AtNCED3, and AtNCED6 are found in both stroma and thylakoid membrane-bound compartments. AtNCED5 is exclusively bound to thylakoids, whereas AtNCED9 remains soluble in stroma. A quantitative real-time PCR analysis and histochemical staining of promoter::GUS activity in transgenic Arabidopsis revealed a complex pattern of localized NCED expression in well-watered plants during development. AtNCED2 and AtNCED3 account for the NCED activity in roots, with localized expression in root tips, pericycle, and cortex cells at the base of lateral roots. Localized AtNCED2 and AtNCED3 expression in pericycle cells is an early marker of lateral initiation sites. AtNCED5, AtNCED6, AtNCED3, and AtNCED2 are expressed in flowers with very high AtNCED6::GUS activity occurring in pollen. AtNCED5::GUS, and to lesser degrees, AtNCED2::GUS and AtNCED3::GUS are expressed in developing anthers. AtNCED5, AtNCED6, AtNCED9, and AtNCED3 contribute to expression in developing seeds with high levels of AtNCED6 present at an early stage. GUS analysis indicates that AtNCED3 expression is confined to the base of the seed, whereas AtNCED5 and AtNCED6 are expressed throughout the seed. Consistent with the studies conducted by Iuchi and his colleagues in 2001, AtNCED3 is the major stress-induced NCED in leaves. Our results indicate that developmental control of ABA synthesis involves localized patterns of AtNCED gene expression. In addition, differential membrane-binding capacity of AtNCEDs is a potential means of post-translational regulation of NCED activity.  相似文献   

13.
Two genes encoding enzymes in the abscisic acid (ABA) biosynthesis pathway, zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED), have previously been cloned by transposon tagging in Nicotiana plumbaginifolia and maize respectively. We demonstrate that antisense down-regulation of the tomato gene LeZEP1 causes accumulation of zeaxanthin in leaves, suggesting that this gene also encodes ZEP. LeNCED1 is known to encode NCED from characterization of a null mutation (notabilis) in tomato. We have used LeZEP1 and LeNCED1 as probes to study gene expression in leaves and roots of whole plants given drought treatments, during light/dark cycles, and during dehydration of detached leaves. During drought stress, NCED mRNA increased in both leaves and roots, whereas ZEP mRNA increased in roots but not leaves. When detached leaves were dehydrated, NCED mRNA responded rapidly to small reductions in water content. Using a detached leaf system with ABA-deficient mutants and ABA feeding, we investigated the possibility that NCED mRNA is regulated by the end product of the pathway, ABA, but found no evidence that this is the case. We also describe strong diurnal expression patterns for both ZEP and NCED, with the two genes displaying distinctly different patterns. ZEP mRNA oscillated with a phase very similar to light-harvesting complex II (LHCII) mRNA, and oscillations continued in a 48 h dark period. NCED mRNA oscillated with a different phase and remained low during a 48 h dark period. Implications for regulation of water stress-induced ABA biosynthesis are discussed.  相似文献   

14.
The maize Vp1 gene and abi3 gene of Arabidopsis are believed to be orthologs based on similarities of the mutant phenotypes and amino acid sequence conservation. Here we show that expression of VP1 driven by the 35S promoter can partially complement abi3-6, a deletion mutant allele of abi3. The visible phenotype of seed produced from VP1 expression in the abi3 mutant background is nearly indistinguishable from wild type. VP1 fully restores abscisic acid (ABA) sensitivity of abi3 during seed germination and suppresses the early flowering phenotype of abi3. The temporal regulation of C1-beta-glucuronidase (GUS) and chlorophyll a/b binding protein (cab3)-GUS reporter genes in developing seeds of 35S-VP1 lines were similar to wild type. On the other hand, two qualitative differences are observed between the 35S-VP1 line and wild type. The levels of CRC and C1-GUS expression are markedly lower in the seeds of 35S-VP1 lines than in wild type suggesting incomplete complementation of gene activation functions. Similar to ectopic expression of ABI3 (Parcy et al., 1994), ectopic expression of VP1 in vegetative tissue enhances ABA inhibition of root growth. In addition, 35S-VP1 confers strong ABA inducible expression of the normally seed-specific cruciferin C (CRC) gene in leaves. In contrast, ectopic ABA induction of C1-GUS is restricted to a localized region of the root elongation zone. The ABA-dependent C1-GUS expression expanded to a broader area in the root tissues treated with exogenous application of auxin. Interestingly, auxin-induced lateral root formation is completely suppressed by ABA in 35S-VP1 plants but not in wild type. These results indicate VP1 mediates a novel interaction between ABA and auxin signaling that results in developmental arrest and altered patterns of gene expression.  相似文献   

15.
16.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   

17.
In response to water deficit, endogenous abscisic acid (ABA) accumulates in plants. This ABA serves as a signal for a multitude of processes, including regulation of gene expression. ABA accumulated in response to water deficit signals cellular as well as whole plant responses playing a role in the pattern of gene expression throughout the plant. Although the function of genes regulated by ABA during stress are currently poorly understood, a number of these genes may permit the plant to adapt to environmental stress.  相似文献   

18.
19.
Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.  相似文献   

20.
Alfalfa is sensitive to waterlogging, and its yields are significantly reduced under this condition. We investigated the effects of soil flooding on free abscisic acid (ABA) accumulation in shoots and roots of alfalfa in relation to plant growth and stomatal conductance responses. The production of dry matter in alfalfa was significantly affected by flooding mainly as a result of a rapid reduction in root growth. Shoot dry matter accumulation was maintained during the first 10 d of treatment and started to decline thereafter. Foliar concentration of the major mineral elements (N, P, K) was reduced by flooding, whereas only K concentration decreased in roots of flooded plants. Regrowth declined with duration of flooding and was less than 50% of controls after 2 weeks. While no changes in ABA concentration could be detected in flooded roots, an increase was noted within a few days in leaves when compared to unflooded controls. This increase in free ABA coincided with the accumulation of large quantities of starch in leaves and a rapid decline in leaf stomatal conductance. Our results support the suggestion that leaf ABA originates from the leaf itself and may be accumulating along with starch as a result of reduced translocation to the roots. Our observation of large accumulations of sucrose in flooded roots agrees with previous reports that supply of carbohydrates is not a limiting factor to root anaerobic metabolism in flooded alfalfa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号