首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the Raf serine/threonine protein kinases is tightly regulated by multiple phosphorylation events. Phosphorylation of either tyrosine 340 or 341 in the catalytic domain of Raf-1 has been previously shown to induce the ability of the protein kinase to phosphorylate MEK. By using a combination of mitogenic and enzymatic assays, we found that phosphorylation of the adjacent residue, serine 338, and, to a lesser extent, serine 339 is essential for the biological and enzymatic activities of Raf-1. Replacement of S338 with alanine blocked the ability of prenylated Raf-CX to transform Rat-1 fibroblasts. Similarly, the loss of S338-S339 in Raf-1 prevented protein kinase activation in COS-7 cells by either oncogenic Ras[V12] or v-Src. Consistent with phosphorylation of S338-S339, acidic amino acid substitutions of these residues partially restored transforming activity to Raf-CX, as well as kinase activation of Raf-1 by Ras[V12] or v-Src. Two-dimensional phosphopeptide mapping of wild-type Raf-CX and Raf-CX[A338A339] confirmed the presence of a phosphoserine-containing peptide with the predicted mobility in the wild-type protein which was absent from the mutant. This peptide could be quantitatively precipitated by an antipeptide antibody specific for the 18-residue tryptic peptide containing S338-S339 and was demonstrated to contain only phosphoserine. Phosphorylation of this peptide in Raf-1 was significantly increased by coexpression with Ras[V12]. These data demonstrate that Raf-1 residues 338 to 341 constitute a unique phosphoregulatory site in which the phosphorylation of serine and tyrosine residues contributes to the regulation of Raf by Ras, Src, and Ras-independent membrane localization.  相似文献   

2.
Although Rafs play a central role in signal transduction, the mechanism(s) by which they become activated is poorly understood. Raf-1 activation is dependent on the protein's ability to bind Ras, but Ras binding is insufficient to activate Raf-1 tyrosine phosphorylation to this Ras-induced activation, in the absence of an over-expressed tyrosine kinase. We demonstrate that Raf-1 purified form Sf9 cells coinfected with baculovirus Ras but not Src could be inactivated by protein tyrosine phosphatase PTP-1B. 14-3-3 and Hsp90 proteins blocked both the tyrosine dephosphorylation and inactivation of Raf-1, suggesting that Raf-1 activity is phosphotyrosine dependent. In Ras-transformed NIH 3T3 cells, a minority of Raf-1 protein was membrane associated, but essentially all Raf-1 activity and Raf-1 phosphotyrosine fractionated with plasma membranes. Thus, the tyrosine-phosphorylated and active pool of Raf-1 constitute a membrane-localized subfraction which could also be inactivated with PTP-1B. By contrast, B-Raf has aspartic acid residues at positions homologous to those of the phosphorylated tyrosines (at 340 and 341) of Raf-1 and displays a high basal level of activity. B-Raf was not detectably tyrosine phosphorylated, membrane localized, or further activated upon Ras transformation, even though B-Raf has been shown to bind to Ras in vitro. We conclude that tyrosine phosphorylation is an essential component of the mechanism by which Ras activates Raf-1 kinase activity and that steady-state activated Ras is insufficient to activate B-Raf in vivo.  相似文献   

3.
A central feature of signal transduction downstream of both receptor and oncogenic tyrosine kinases is the Ras-dependent activation of a protein kinase cascade consisting of Raf-1, Mek (MAP kinase kinase) and ERKs (MAP kinases). To study the role of tyrosine kinase activity in the activation of Raf-1, we have examined the properties of p74Raf-1 and oncogenic Src that are necessary for activation of p74Raf-1. We show that in mammalian cells activation of p74Raf-1 by oncogenic Src requires pp60Src to be myristoylated and the ability of p74Raf-1 to interact with p21Ras-GTP. The Ras/Raf interaction is required for p21Ras-GTP to bring p74Raf-1 to the plasma membrane for phosphorylation at tyrosine 340 or 341, probably by membrane-bound pp60Src. When oncogenic Src is expressed with Raf-1, p74Raf-1 is activated 5-fold; however, when co-expressed with oncogenic Ras and Src, Raf-1 is activated 25-fold and this is associated with a further 3-fold increase in tyrosine phosphorylation. Thus, p21Ras-GTP is the limiting component in bringing p74Raf-1 to the plasma membrane for tyrosine phosphorylation. Using mutants of Raf-1 at Tyr340/341, we show that in addition to tyrosine phosphorylation at these sites, there is an additional activation step resulting from p21Ras-GTP recruiting p74Raf-1 to the plasma membrane. Thus, the role of Ras in Raf-1 activation is to bring p74Raf-1 to the plasma membrane for at least two different activation steps.  相似文献   

4.
GTPase-activating protein (GAP) is a key regulator of the cellular Ras protein, which is implicated in oncogenic signal transduction pathways downstream of the viral Src (v-Src) kinase. Previous studies demonstrated that v-Src induces tyrosine phosphorylation of GAP, suggesting that GAP may provide a biochemical link between v-Src and Ras signaling pathways. To determine the precise residues in GAP phosphorylated by Src kinases, we used a baculovirus/insect cell expression system for investigating in vitro phosphorylation of GAP. Phosphopeptide mapping analysis revealed that v-Src and normal cellular Src (c-Src) phosphorylate tyrosine residues in bovine GAP at one major site and one minor site in vitro. Significantly, the major site of GAP phosphorylation in vitro is also the major site of in vivo tyrosine phosphorylation of GAP in rat fibroblasts transformed by v-Src. Analyses of GAP deletion mutants and TrpE-GAP fusion proteins established that Tyr-457 of bovine GAP (and the corresponding residue of rat and human GAP) is the major site of tyrosine phosphorylation. Our results demonstrate that the v-Src kinase induces phosphorylation of the same tyrosine residue of GAP in vitro and in vivo, suggesting that GAP is a direct substrate of activated Src kinases in vivo. Because epidermal growth factor receptor phosphorylates the equivalent tyrosine residue in human GAP (Tyr-460), these findings are consistent with the hypothesis that specific phosphorylation of GAP at this site may have a physiologically important role in regulating mitogenic Ras signaling pathways.  相似文献   

5.
Mechanism of inhibition of Raf-1 by protein kinase A.   总被引:31,自引:14,他引:17       下载免费PDF全文
The cytoplasmic Raf-1 kinase is essential for mitogenic signalling by growth factors, which couple to tyrosine kinases, and by tumor-promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate, which activate protein kinase C (PKC). Signalling by the Raf-1 kinase can be blocked by activation of the cyclic AMP (cAMP)-dependent protein kinase A (PKA). The molecular mechanism of this inhibition is not precisely known but has been suggested to involve attenuation of Raf-1 binding to Ras. Using purified proteins, we show that in addition to weakening the interaction of Raf-1 with Ras, PKA can inhibit Raf-1 function directly via phosphorylation of the Raf-1 kinase domain. Phosphorylation by PKA interferes with the activation of Raf-1 by either PKC alpha or the tyrosine kinase Lck and even can downregulate the kinase activity of Raf-1 previously activated by PKC alpha or amino-terminal truncation. This type of inhibition can be dissociated from the ability of Raf-1 to associate with Ras, since (i) the isolated Raf-1 kinase domain, which lacks the Ras binding domain, is still susceptible to inhibition by PKA, (ii) phosphorylation of Raf-1 by PKC alpha alleviates the PKA-induced reduction of Ras binding but does not prevent the downregulation of Raf-1 kinase activity by PKA and (iii) cAMP agonists antagonize transformation by v-Raf, which is Ras independent.  相似文献   

6.
The serine/threonine kinase activity of the Raf-1 proto-oncogene product is stimulated by the activation of many tyrosine kinases, including growth factor receptors and pp60v-src. Recent studies of growth factor signal transduction pathways demonstrate that Raf-1 functions downstream of activated tyrosine kinases and p21ras and upstream of mitogen-activated protein kinase. However, coexpression of both activated tyrosine kinases and p21ras is required for maximal activation of Raf-1 in the baculovirus-Sf9 expression system. In this study, we investigated the role of tyrosine kinases and tyrosine phosphorylation in the regulation of Raf-1 activity. Using the baculovirus-Sf9 expression system, we identified Tyr-340 and Tyr-341 as the major tyrosine phosphorylation sites of Raf-1 when coexpressed with activated tyrosine kinases. Introduction of a negatively charged residue that may mimic the effect of phosphorylation at these sites activated the catalytic activity of Raf-1 and generated proteins that could transform BALB/3T3 cells and induce the meiotic maturation of Xenopus oocytes. In contrast, substitution of noncharged residues that were unable to be phosphorylated produced a protein that could not be enzymatically activated by tyrosine kinases and that could block the meiotic maturation of oocytes induced by components of the receptor tyrosine kinase pathway. These findings demonstrate that maturation of the tyrosine phosphorylation sites can dramatically alter the function of Raf-1. In addition, this is the first report that a transforming Raf-1 protein can be generated by a single amino acid substitution.  相似文献   

7.
Many receptors coupled to the pertussis toxin-sensitive G(i/o) proteins stimulate the mitogen-activated protein kinase (MAPK) pathway. The role of the alpha chains of these G proteins in MAPK activation is poorly understood. We investigated the ability of Galpha(o) to regulate MAPK activity by transient expression of the activated mutant Galpha(o)-Q205L in Chinese hamster ovary cells. Galpha(o)-Q205L was not sufficient to activate MAPK but greatly enhanced the response to the epidermal growth factor (EGF) receptor. This effect was not associated with changes in the state of tyrosine phosphorylation of the EGF receptor. Galpha(o)-Q205L also potentiated MAPK stimulation by activated Ras. In Chinese hamster ovary cells, EGF receptors activate B-Raf but not Raf-1 or A-Raf. We found that expression of activated Galpha(o) stimulated B-Raf activity independently of the activation of the EGF receptor or Ras. Inactivation of protein kinase C and inhibition of phosphatidylinositol-3 kinase abolished both B-Raf activation and EGF receptor-dependent MAPK stimulation by Galpha(o). Moreover, Galpha(o)-Q205L failed to affect MAPK activation by fibroblast growth factor receptors, which stimulate Raf-1 and A-Raf but not B-Raf activity. These results suggest that Galpha(o) can regulate the MAPK pathway by activating B-Raf through a mechanism that requires a concomitant signal from tyrosine kinase receptors or Ras to efficiently stimulate MAPK activity. Further experiments showed that receptor-mediated activation of Galpha(o) caused a B-Raf response similar to that observed after expression of the mutant subunit. The finding that Galpha(o) induces Ras-independent and protein kinase C- and phosphatidylinositol-3 kinase-dependent activation of B-Raf and conditionally stimulates MAPK activity provides direct evidence for intracellular signals connecting this G protein subunit to the MAPK pathway.  相似文献   

8.
The serine/threonine kinase Raf-1 is crucial for transducing intracellular signals emanating from numerous growth factors. Here we used the J2E erythroid cell line transformed by the nu-raf/nu-myc oncogenes to examine the effects of erythropoietin on endogenous Raf-1 activity. Despite the presence of constitutively active v-raf in these cells, Raf-1 exokinase activity increased after erythropoietin stimulation. This increase in enzymatic activity coincided with tyrosine phosphorylation of Raf-1 on residue Y341. Significantly, the tyrosine kinase Lyn coimmunoprecipitated with Raf-1, and Raf-1 was not tyrosine-phosphorylated in a J2E subclone lacking Lyn. Therefore, it was concluded that Lyn may be the kinase responsible for tyrosine phosphorylating Raf-1 and increasing its exokinase activity in response to erythropoietin.  相似文献   

9.
Raf-1 is a regulator of cellular proliferation, differentiation, and apoptosis. Activation of the Raf-1 kinase activity is tightly regulated and involves targeting to the membrane by Ras and phosphorylation by various kinases, including the tyrosine kinase Src. Here we demonstrate that the connector enhancer of Ksr1, CNK1, mediates Src-dependent tyrosine phosphorylation and activation of Raf-1. CNK1 binds preactivated Raf-1 and activated Src and forms a trimeric complex. CNK1 regulates the activation of Raf-1 by Src in a concentration-dependent manner typical for a scaffold protein. Down-regulation of endogenously expressed CNK1 by small inhibitory RNA interferes with Src-dependent activation of ERK. Thus, CNK1 allows cross-talk between Src and Raf-1 and is essential for the full activation of Raf-1.  相似文献   

10.
The Raf-1 kinase is an important signaling molecule, functioning in the Ras pathway to transmit mitogenic, differentiative, and oncogenic signals to the downstream kinases MEK and ERK. Because of its integral role in cell signaling, Raf-1 activity must be precisely controlled. Previous studies have shown that phosphorylation is required for Raf-1 activation, and here, we identify six phosphorylation sites that contribute to the downregulation of Raf-1 after mitogen stimulation. Five of the identified sites are proline-directed targets of activated ERK, and phosphorylation of all six sites requires MEK signaling, indicating a negative feedback mechanism. Hyperphosphorylation of these six sites inhibits the Ras/Raf-1 interaction and desensitizes Raf-1 to additional stimuli. The hyperphosphorylated/desensitized Raf-1 is subsequently dephosphorylated and returned to a signaling-competent state through interactions with the protein phosphatase PP2A and the prolyl isomerase Pin1. These findings elucidate a critical Raf-1 regulatory mechanism that contributes to the sensitive, temporal modulation of Ras signaling.  相似文献   

11.
Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at mitochondria.  相似文献   

12.
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras.  相似文献   

13.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

14.
We have previously shown that stimulation of proliferation of avian embryonic muscle cells (myoblasts) by 1alpha,25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)) is mediated by activation of the mitogen-activated protein kinase (MAPK; ERK1/2). To understand how 1alpha,25(OH)(2)D(3) up-regulates the MAPK cascade, we have investigated whether the hormone acts upstream through stimulation of Raf-1 and the signaling mechanism by which this effect might take place. Treatment of chick myoblasts with 1alpha,25(OH)(2)D(3) (1 nm) caused a fast increase of Raf-1 serine phosphorylation (1- and 3-fold over basal at 1 and 2 min, respectively), indicating activation of Raf-1 by the hormone. These effects were abolished by preincubation of cells with a specific Ras inhibitor peptide that involves Ras in 1alpha,25(OH)(2)D(3) stimulation of Raf-1. 1alpha,25(OH)(2)D(3) rapidly induced tyrosine de-phosphorylation of Ras-GTPase-activating protein, suggesting that inhibition of Ras-GTP hydrolysis is part of the mechanism by which 1alpha,25(OH)(2)D(3) activates Ras in myoblasts. The protein kinase C (PKC) inhibitors calphostin C, bisindolylmaleimide I, and Ro 318220 blocked 1alpha,25(OH)(2)D(3)-induced Raf-1 serine phosphorylation, revealing that hormone stimulation of Raf-1 also involves PKC. In addition, transfection of muscle cells with an antisense oligodeoxynucleotide against PKCalpha mRNA suppressed serine phosphorylation by 1alpha,25(OH)(2)D(3). The increase in MAPK activity and tyrosine phosphorylation caused by 1alpha,25(OH)(2)D(3) could be abolished by Ras inhibitor peptide, compound PD 98059, which prevents the activation of MEK by Raf-1, or incubation of cell lysates before 1alpha,25(OH)(2)D(3) exposure with an anti-Raf-1 antibody. In conclusion, these results demonstrate for the first time in a 1alpha,25(OH)(2)D(3) target cell that activation of Raf-1 via Ras and PKCalpha-dependent serine phosphorylation plays a central role in hormone stimulation of the MAPK-signaling pathway leading to muscle cell proliferation.  相似文献   

15.
Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation.  相似文献   

16.
Activation of beta-adrenoreceptors induces cardiomyocyte hypertrophy. In the present study, we examined isoproterenol-evoked intracellular signal transduction pathways leading to activation of extracellular signal-regulated kinases (ERKs) and cardiomyocyte hypertrophy. Inhibitors for cAMP and protein kinase A (PKA) abolished isoproterenol-evoked ERK activation, suggesting that Gs protein is involved in the activation. Inhibition of Gi protein by pertussis toxin, however, also suppressed isoproterenol-induced ERK activation. Overexpression of the Gbetagamma subunit binding domain of the beta-adrenoreceptor kinase 1 and of COOH-terminal Src kinase, which inhibit functions of Gbetagamma and the Src family tyrosine kinases, respectively, also inhibited isoproterenol-induced ERK activation. Overexpression of dominant-negative mutants of Ras and Raf-1 kinase and of the beta-adrenoreceptor mutant that lacks phosphorylation sites by PKA abolished isoproterenol-stimulated ERK activation. The isoproterenol-induced increase in protein synthesis was also suppressed by inhibitors for PKA, Gi, tyrosine kinases, or Ras. These results suggest that isoproterenol induces ERK activation and cardiomyocyte hypertrophy through two different G proteins, Gs and Gi. cAMP-dependent PKA activation through Gs may phosphorylate the beta-adrenoreceptor, leading to coupling of the receptor from Gs to Gi. Activation of Gi activates ERKs through Gbetagamma, Src family tyrosine kinases, Ras, and Raf-1 kinase.  相似文献   

17.
Signaling pathways mediating the antiangiogenic action of 16K human (h)PRL include inhibition of vascular endothelial growth factor (VEGF)-induced activation of the mitogen-activated protein kinases (MAPK). To determine at which step 16K hPRL acts to inhibit VEGF-induced MAPK activation, we assessed more proximal events in the signaling cascade. 16K hPRL treatment blocked VEGF-induced Raf-1 activation as well as its translocation to the plasma membrane. 16K hPRL indirectly increased cAMP levels; however, the blockade of Raf-1 activation was not dependent on the stimulation of cAMP-dependent protein kinase (PKA), but rather on the inhibition of the GTP-bound Ras. The VEGF-induced tyrosine phosphorylation of the VEGF receptor, Flk-1, and its association with the Shc/Grb2/Ras-GAP (guanosine triphosphatase-activating protein) complex were unaffected by 16K hPRL treatment. In contrast, 16K hPRL prevented the VEGF-induced phosphorylation and dissociation of Sos from Grb2 at 5 min, consistent with inhibition by 16K hPRL of the MEK/MAPK feedback on Sos. The inhibition of Ras activation was paralleled by the increased phosphorylation of 120 kDa proteins comigrating with Ras-GAP. Taken together, these findings show that 16K hPRL inhibits the VEGF-induced Ras activation; this antagonism represents a novel and potentially important mechanism for the control of angiogenesis.  相似文献   

18.
Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras   总被引:6,自引:0,他引:6  
Deora AA  Hajjar DP  Lander HM 《Biochemistry》2000,39(32):9901-9908
  相似文献   

19.
20.
Negative regulation of Raf-1 by phosphorylation of serine 621.   总被引:13,自引:6,他引:7       下载免费PDF全文
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号