首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the phytomelanin layer in the achenes of Ageratum conyzoides (Compositae, Eupatorieae) was studied using light and electron microscopy. At the level of the embryo sac, the young ovary wall contains an outer zone, consisting of an epidermis and two hypodermal layers, and an inner zone, consisting of developing fiber cells and 3–5 layers of parenchyma. A schizogenous space forms between the developing fibers and the inner hypodermis at about the time that the embryo sac is fully organized. At this stage, the developing fibers contain papilla which are outgrowths that connect the fibers to the inner hypodermal cells. After fertilization, phytomelanin accumulates on the cell walls lining this space. Subsequently, by the time the fruit matures, the phytomelanin fills the space completely and forms a solid, black layer. The surface of the inner hypodermis that faces the space forms a mold; the characteristic peglike projections of the mature phytomelanin layer develop by filling the invaginations between the hypodermal cells. During phytomelanin accumulation, abundant smooth endoplasmic reticulum is present in the hypodermis, especially in the outer layer. It is hypothesized that the precursors of the phytomelanin are synthesized in this endoplasmic reticulum and that these precursors migrate into the space where the phytomelanin is polymerized.  相似文献   

2.
The integument and podia of the sea cucumber Thyone briareus were examined by bright field and electron microscopy. The epidermal surface was found to be covered by an acellular, PAS positive cuticle which appeared to be secreted by the underlying epidermal cells. Although the superficial portion of the cuticle contains numerous fine filaments, their ultrastructure bears no resemblance to collagen fibers. The epidermal cells are widely spaced and have long apical processes that extend along the under surface of the cuticle forming a contiguous epithelium. The apical expansions of the epidermal cells are attached to one another by means of septate desmosomes which may run continuously around all epidermal cells. Special attachment structures within these apical expansions appear to bind the cuticle to the dermis. The epidermal cells and their apical expansions are separated from the dermis by an 800 Å thick basement membrane. Granule containing cells in the upper dermis send processes up to the cuticle where they are bound to the typical epidermal cells by septate desmosomes. The abundant membrane bound granules of the cells enter villous-like processes which pass through the cuticle. The function of these cells may be to produce an adhesive material on the podia or they may be pigment cells. The thick dermis consists of a superficial zone, containing largely ground substance; a middle or laminated zone containing laminae of collagen fibers arranged in an orthogonal fashion; and a hypodermis consisting largely of ground substance and reticular fibers. Fibroblasts are abundant in the superficial dermis and between the collagen laminae. Wandering coelomocytes, or morula cells, accumulate between the collagen laminae and in the hypodermis. They may also become an integral part of the epidermis by forming septate desmosomes with epidermal cells. Morula cells contain highly specialized spherules whose tinctorial properties and electron microscopic appearance suggest that they contain protein and mucopolysaccharide.  相似文献   

3.

The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters.

  相似文献   

4.
应用生物显微技术和免疫组织化学方法,研究了不同剂量X射线(0.0、3.5、6.5 Gy)辐射对发育期(1、5、10和20 d)昆明小鼠(Mus musculus)仔鼠皮肤组织结构和c-Fos、KGF表达的影响,探讨了c-Fos、KGF的生物活性作用及调控意义,并利用IPP专业图像分析软件对其表达强度进行定量分析.结果表...  相似文献   

5.
Migratory behaviour of Ancylostoma braziliense was studied in relation to the structure of the skin in dogs after primary infections. Data were obtained studying serial sections of lateral skin areas 6 mm in diameter, which had been exposed to larvae. The sections were stained either with Harris' haematoxylin and eosin or with P.A.S. or as outlined by Crossmon. Most of the larvae managed to penetrate the skin within 1/2 hr after the application. Hairs did not seem to constitute sites of entry. The larvae moved into the horny layer where edges of keratinized cells provide uneven spots. They migrated approximately parallel to the surface from the horny layer into the living epidermis and continued into an external root sheath of a hair follicle. They could only leave this site via sebaceous glands for the dermis or via apocrine sweat glands for the hypodermis. Tunnels from the epidermis into the dermis, however, suggested that a direct trans-epidermal migration had occurred. The vessels invaded by larvae were hypodermal lymphatic vessels. The first ones were found in these structures 1/2 h after the onset of the exposure.  相似文献   

6.
Melanocytes account for approximately 5–10% percent of the cells in adult epidermis. Unlike the ectodermally derived keratinocytes, they originate in the neural crest and migrate into the epidermis early in development. There has been an interest in melanocytes in developing human skin since the late 1800s, when concentrated pigmented cells were identified in the sacro-coccygeal skin of Japanese fetuses. This observation led to speculation and subsequent investigation about the racial nature of the melanocytes in this site (the Mongolian spot), the presence of melanocytes in fetuses of other races, the timing of appearance of these cells in both the dermis and epidermis, and their origin. The early investigators relied primarily on histochemical methods that stained either the premelanosome or the pigmented melanosome, or relied upon the activity of tyrosinase within the melanosome to effect the DOPA reaction. Studies by electron microscopy added further documentation to the presence of melanocytes in the skin by resolving the structure of the melanosome regardless of its state of pigmentation. All of these methods recognized, however, only differentiated melanocytes. The thorough investigations of melanocytes in the skin from a large number of black embryos and fetuses by Zimmerman and colleagues between 1948 and 1955 provided insight into the time of appearance of melanocytes in the dermis (10–11 weeks' menstrual age) and the epidermis (11–12 weeks) and revealed the density of these cells in both zones of the skin of several regions of the body. The precise localization of the melanocytes in the developing hair follicles was contributed by the studies of Mishima and Widlan (J Invest Dermatol 1966; 46:263–277). More recently, monoclonal antibodies have been developed that recognize common oncofetal or oncodifferentiation antigens on the surface or in the cytoplasm of melanoma cells and developing melanocytes (but not normal adult melanocytes). These antibodies recognize the cells irrespective of the presence or absence of melanosomes or their activity in the synthesis of pigment and therefore are valuable tools for re-examining the presence, density, and distribution patterns of melanocytes in developing human skin. Using one of these antibodies (HMB-45), it was found that dendritic melanocytes are present in the epidermis between 40 and 50 days estimated gestational age in a density comparable with that of newborn epidermis and are distributed in relatively non-random patterns. A number of questions about the influx of cells into the epidermis, potential reservoirs of melanoblasts retained within the dermis, division of epidermal melanocytes, and the interaction of melanocytes and keratinocytes during development remain unresolved. The tools now appear to be available, however, to begin to explore many of these questions.  相似文献   

7.
The development of electric organs (EO) in the electric ray, Torpedo marmorata, is described. Four pairs of electric nerves contact the branchiomeric mesoderm layer, which produces four pairs of EO primordia (at about the stage of 21-mm total body length, 70-mg weight). These are the sites of column genesis, yielding the definitive column number at the stage of 25–27 mm (200–250 mg), and growing together on each side of the pharynx. Columns are composed of myotubes, each containing one myofibril and several nuclei. During the 35- to 55-mm stages (0.7 – 2.5 g), these “electroblasts” dedifferentiate, each giving rise to one electroplate derived only from its ventral half [“plate builder” (PB)]. Plate genesis appears as a perfectly synchronized process, involving coordinated changes of cell shape. The occurrence of cell fusions is not ruled out. At the same time, some individual contacts of PB with nerve fibers are seen. Reflex electric organ discharge (EOD) appears at the stages of 66–73 mm (6–7 g), when only a few nerve ending-like membrane enclosures are present and acetylcholinesterase (AChE) begins to accumulate. The parallel courses of EOD maturation, synaptogenesis, and AChE accumulation are described.  相似文献   

8.
Eleutherodactylus coqui develops directly from a large 3.5-mm egg to a froglet, without an intervening tadpole stage. We have examined the development of the body wall, a structure whose behavior has been altered in this derived development. In an event that is unusual for amphibian embryos, the yolk mass is secondarily surrounded by the body wall, which originates near the embryo’s trunk. The epidermis of the body wall is marked by melanophores, and the rectus abdominis, which will form the ventral musculature, is near its leading edge. As the body wall expands, the epidermis, melanophores, and rectus abdominis all move from the dorsal side to close over the yolk at the ventral midline. The original ectoderm over the yolk undergoes apoptosis, as it is replaced by body wall epidermis. Intact muscles are not required for ventral closure of the body wall, despite their normal presence near the advancing edge. Comparative examination of embryos of Xenopus laevis and Rana pipiens suggests that ventral closure does not occur in species with tadpoles. The expansion of dorsal tissues over the yolk, as illustrated by E. coqui, may have been important in the origin of amniote embryos. Received: 23 April 1998 / Accepted: 28 June 1998  相似文献   

9.
This study was undertaken to identify the normal morphologic, immunohistochemical and ultrastructural features of skin of the turbot (Psetta maxima L.). In the turbot skin, three morphologically distinct layers were identified: epidermis, dermis and hypodermis. The epidermis was non-keratinizing, stratified squamous epithelium that varies in thickness from 5 to 14 cells and 60 to 100 μm in size. Goblet cells were seen randomly distributed between malpighian cells in the epidermal layer. These mucous cells were mainly located in the upper third of the epidermis and displayed a spherical to elongated morphology. Dermis was divided in two well-differentiated layers, the superficial stratum laxum and the deeper stratum compactum. Hypodermis was a loose layer mainly composed by adipocytes but we could observe variable amounts of fibroblast, collagen and blood vessels. In turbot two pigmentary layers could be identified: the pigmentary layer of dermis was located between basement membrane and dermis and the pigmentary layer of hypodermis immediately above the muscular layer. Three different types of chromatophores were present: melanophores, iridophores and xanthophores. The main differences observed between groups of fish with different colouration were in the amount of melanophores and xanthophores. The purpose of this article is to provide an overview of normal cutaneous biology prior to consideration of specific cutaneous alterations and diseases in turbot.  相似文献   

10.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

11.
The site of the scaleless gene's activity in the development of abnormal feathers was determined by reciprocally recombining epidermis and dermis between normal and scaleless chick embryos and culturing the recombinants for seven days on the chorioallantoic membrane. When recombined with a common dermal source, feather development is enhanced by scaleless high line as compared to scaleless low line epidermis. Against a common responding tissue, 7-day normal back epidermis, significant differences were not found in feather inducing ability between normal, scaleless high line and scaleless low line dermis. It was concluded that, in relation to abnormal feathering, these tissue interactions reveal that the site of the scaleless gene's activity is the epidermis. A model of tissue interaction in the development of normal and abnormal feathers is presented. According to the model, the focus of the scaleless mutation and the genes accumulated by selection for high or low feather numbers is the epidermis, the effect being that the reactivity of the epidermis to dermal stimuli is altered. Subsequently, the epidermis controls the morphogenetic organization of the dermis. The scaleless dermis is presumed to contain normal positional information for the determination of feather structure and pattern.  相似文献   

12.
Successful cryopreservation of the important silkworm bioresource, Bombyx mori, is essential. In this study, we aimed for successful cryopreservation using vitrification of silkworm embryos. Furthermore, the embryos were assessed for the most appropriate sampling stage. We found that vitrified embryos developed to the serosa ingestion stage when they were vitrified at embryonic stage 24–25. The most suitable stage for vitrification was around a 5–10 h period when the tracheal fibers were elongating in stage 25. None of the vitrified embryos developed into larvae, although some did develop to the pre-hatching stage. From histological analysis, we found that several small cracks formed on the cuticle covering the hypodermis in the vitrified embryos. Additionally, the midgut epithelium was detached from the midgut wall and mixed with the yolk in the midgut lumen. We speculate that the vitrified embryos died from a rapid loss of body water from the small cracks formed in the cuticle. We also suggest that the vitrified embryos may have resulted in dysfunction of the midgut.  相似文献   

13.
Abstract

Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6–18?mm greatest length or about 120–320?µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42?mm to over 500?mm greatest length) or when the cerebral cortex reaches a thickness of 1.2–9.8?mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity.  相似文献   

14.
Exposure of skin to UV light presents a potent oxidative stress and this could alter the skin redox state. In this context, we evaluated the ability of electron paramagnetic resonance (EPR) imaging to provide noninvasive in vivo mapping of the redox status of the skin of living rats. The redox status was measured using a topically applied nitroxyl spin probe, (15)N-PDT. The nitroxyl intensity profile obtained across the skin layers showed that the concentration of the probe was higher in the epidermis and lower in the dermis and hypodermis. Skin permeability and reduction metabolism were evaluated in the skin exposed to UVB (312 nm) radiation. Exposure of skin to UVB decreased the overall reduction rate constant of the nitroxyl probe to 25 +/- 6% of the value obtained in the untreated skin. EPR imaging data showed that after the UVB treatment, the reduction rate constant decreased to 41 +/- 1% in epidermis, 28 +/- 1% in dermis, and 21 +/- 8% in hypodermis layers. The data suggested that UVB decreased the overall reducing capability of the skin with a larger decrease in the dermis and hypodermis. In summary, in vivo EPR imaging measurements showed significant alterations in the redox state of the skin exposed to UV light.  相似文献   

15.
After amputation, the tail of lizards regenerates while the limb forms a short scarring outgrowth. Using phospho‐histone‐H3 immunohistochemistry the mitotic activity of limb tissues at 12–25 days after amputation has been studied, when a limb outgrowth of 0.5–2 mm in length is covered by wound epidermis and the underlying connective is turning into a dense scar. In comparison with a regenerating tail of 3–5 mm in length, the number of dividing cells is reduced of 40–70% in different tissues of the scarring limb 1–2 mm in length at 18 days postamputation. Dividing cells are still present at 12–25 days postamputation in the cartilaginous epiphyses of the transected tibia and fibula and of the untransected femur. Also, the injured muscles present at the base of the scarring outgrowth still contain sparse dividing cells after 25 days postamputation of the limb. Together previous studies, the present observations suggest that after the initial proliferation of fibroblasts deriving from the injured tissues, especially from the dermis and intermuscle connectives during the initial 7–15 days postinjury, these cells cover the injured tissues underneath the wound epidermis, but rapidly produce high levels of collagen turning the initial blastema into a scar.  相似文献   

16.
The corneal anterior epithelium of younger chick embryos can be changed into a keratinized epidermis, when it is cultured in vitro combined with 6 1/2-day dorsal dermis. Even if a Millipore filter is inserted between the corneal anterior epithelium and underlying dorsal dermis, the epithelium undergoes similar metaplastic changes. In older embryos, however, the epithelium gradually loses the competence for the keratinization. Cultivation of cornea (anterior epithelium, stroma and endothelium) of 6 1/2- or 10-day embryos results in maintenance of its original pattern, and the epithelium fails to differentiate into a keratinized epidermis. The dermis isolated from 8 1/2-day dorsal or 12 1/2-day tarsometatarsal skin is not so effective in inducing the epidermal metaplasia. The mesenchyme of 5 1/2-day proventriculus or 5 1/2-day gizzard fails to bring about any endodermal metaplasia of the corneal epithelium. The corneal stroma, on the other hand, has no inhibitory action on the keratinization of the epidermis obtained from 6 1/2-day dorsal skin.  相似文献   

17.
Development of Vacuolar Volume in the Root Tips of Pea   总被引:1,自引:0,他引:1  
Cell and vacuole areas were measured by light microscopy inlongitudinal and transverse sections cut at 0.4-mm intervalsalong the apical 7.2 mm of the primary root of pea. The vacuolararea (or volume) fraction — that is, vacuole area (orvolume) divided by cell area (or volume) — increased fromabout 15 % in cells 0.4 mm from the distal boundary of the apicalmeristem (the cap /root junction), to about 85% in cells situated6.8–7.2 mm from that boundary. At each distance, vacuoledevelopment tended to be greater in the cortex than in the stele.Vacuoles occupied about 22% of the tissue volume in the first1 mm length of root (measured from the cap/root junction), about31 % of the tissue volume in the first 2 mm, and about 45% whensummed over the apical 5-mm length of root. Phosphorus supplyor deprivation produced only minor and non-significant changesin vacuole development. The results have implications affectingprevious estimates of cytoplasmic and vacuolar phosphate concentrationsin pea root tips. Pisum sativum L., pea, root, vacuole, volume  相似文献   

18.
ABSTRACT

DDR1 and DDR2 are expressed in skin but their expression differs according to the skin compartment, epidermis, dermis, hypodermis and to the embryonic origin of the cells. In skin, it seems that during physiological processes such as wound healing or pathological processes such as tumorigenesis or systemic sclerosis development only one of the DDR is dysregulated. Furthermore, the altered DDR in pathological process is not necessarily the DDR implicated in basal homeostasis. Indeed, in epidermis, while DDR1 is the main DDR involved in melanocyte homeostasis, DDR2 seems to be the main DDR implicated in melanoma. On the contrary, in dermis, while DDR2 is necessary for normal wound healing, dysregulation of DDR1 is associated with abnormal wound healing leading to keloid. In conclusion, targeting DDR could be a therapeutic solution, however side effects have to be managed carefully.  相似文献   

19.
The capture of four female Ragged-tooth Sharks, Carcharias taurus, in the early stages of pregnancy in the bather protective nets along the KwaZulu-Natal coastline provided an opportunity to investigate embryonic development. A total of 31 embryos, 8–225 mm total length, were found. Of these, 15 were encapsulated and 16 were found free-floating in the uterus. Six embryos, three of which were encapsulated (35–50 mm) and three free-floating (36–52 mm), were examined under both light and scanning electron microscopy. The embryos possessed tooth-like structures. Spectral analysis of these structures revealed the presence of calcium, phosphorus, fluoride and oxygen, which supports the hypothesis that they are teeth. These teeth would enable embryos to escape encapsulation. These free-floating embryos are the smallest on record, with the previous smallest being a 40 mm embryo. These findings would now amend the current literature of C. taurus embryology. These results could affect the current understanding of C. taurus reproduction and biology and may impact any current breeding programs that are attempting to increase the fecundity of these species.  相似文献   

20.
The ontogeny of schooling behaviour in the striped jack   总被引:3,自引:0,他引:3  
The ontogeny of schooling behaviour was investigated in laboratory-reared striped jack Pseudocaranx dentex larvae and juveniles. Mean separation angle between nearest individuals averaged 78 and 82° in 10- and 12-mm fish, respectively, and decreased to 57° in 16-mm fish. In addition, interindividual distance decreased from three times body length in 12-mm fish to twice the body length in 16-mm individuals; this value continued to decrease gradually to 1·3 at 19 mm to 0·79 at 30 mm. Mutual attraction due to visual recognition was observed in 12-mm fish and increased with total length. The optokinetic response ( Ro , the ability of a fish to keep station with moving patterns) first appeared in 4–6-mm larvae. In spite of the traditional emphasis of the importance of Ro in schooling behaviour, the onset of Ro was insufficient to result in school formation. The emergence of mutual attraction seems essential for the ontogeny of schooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号