首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CTP : phosphocholine cytidylyltransferase activity exists in both the microsome and cytosol fractions of adult lung, 36 and 59%, respectively. Although these enzyme activities are stimulated in vitro by added lipid activators (i.e. phosphatidylglycerol), there are significant levels of activity in the absence of added lipid. We have removed endogenous lipid material from microsome and cytosol preparations of rat lung by rapid extraction with isopropyl ether. The extraction procedure did not cause any loss of cytidylyltransferase activity in the cytosol. After the extraction the enzyme was almost completely dependent upon added lipid activator. Isopropyl ether extraction of microsome preparations produced a loss of 40% of the cytidylyltransferase activity, when measured in the presence of added phosphatidylglycerol. Lipid material extracted into isopropyl ether restored the cytidylyltransferase activity in cytosol. The predominant species of enzyme activator in the isopropyl ether extracts was fatty acid. A variety of naturally occurring unsaturated fatty acids stimulated the cytidylyltransferase to the same extent as phosphatidylglycerol. Saturated fatty acids were inactive.  相似文献   

2.
Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process is unknown. Here, we show that phosphatidylcholine (PC) acts as a surfactant to prevent LD coalescence, which otherwise yields large, lipolysis-resistant LDs and triglyceride (TG) accumulation. The need for additional PC to coat the enlarging surface during LD expansion is provided by the Kennedy pathway, which is activated by reversible targeting of the rate-limiting enzyme, CTP:phosphocholine cytidylyltransferase (CCT), to growing LD surfaces. The requirement, targeting, and activation of CCT to growing LDs were similar in cells of Drosophila and mice. Our results reveal a mechanism to maintain PC homeostasis at the expanding LD monolayer through targeted activation of a key PC synthesis enzyme.  相似文献   

3.
Experimental evidence is reported that the addition in vitro of a polyunsaturated soybean phospholipid material (EPL) to a CTP:PC cytidylyltransferase preparation from rat liver (E.C. 2.7.7.15) produces noticeable stimulation of this enzymatic activity. Preincubation for different time intervals of EPL under air or oxygen further stimulates the activating effects. Little influence is exerted on the same enzyme by saturated lipids, such as dipalmitoyl-sn-glycero-3-phosphorylcholine and distearoyl-sn-glycero-3-phosphorylcholine. It is proposed that the lipid components of the EPL which exert the stimulatory action may be lyso-phospholipid moieties derived from EPL upon preincubation or directly present in the product. The biological significance of these activations in liver tissue is discussed.  相似文献   

4.
Fatty acids are known to cause an increase in the incorporation of radioactive choline into phosphatidylcholine. A coincident increase in membrane cytidylyltransferase activity is well documented. The purpose of the present studies was to determine the direct effects of oleic acid on the kinetic properties of membrane cytidylyltransferase. An examination of the reaction characteristics of membrane cytidylyltransferase revealed that membranes from adult rat lung contained high CTPase activity. This activity prevented the determination of reaction velocities at low CTP concentrations. The CTPase activity was blocked by the addition of ADP or ATP to the reaction. The addition of 6.0 mM ADP to the assay mixture enabled us to determine the effect of oleate on the CTP Km. Oleate (122 microM) caused a significant decrease in CTP Km for microsomal cytidylyltransferase (0.99 mM to 0.33 mM) and H-Form cytidylyltransferase (1.04 mM to 0.27 mM). Oleate did not decrease the CTP Km for L-Form cytidylyltransferase. Oleate had no effect on the choline phosphate Km in microsomal, H-Form or L-Form cytidylyltransferase. Oleate also increased the Vmax for cytidylyltransferase. The increase was dependent upon the concentration of oleate with a maximal increase of 50-60% at 100-130 microM oleate. We conclude that oleate has a direct stimulatory effect on cytidylyltransferase when it is in the active form (membrane bound or H-Form lipoprotein complex). We suggest that the kinetic effects operate synergistically with other regulatory mechanisms such as translocation or conversion of inactive to active species. The direct effect of oleate on the cytidylyltransferase may be an important regulatory mechanism when CTP concentrations are limiting.  相似文献   

5.
CTP:phosphocholine cytidylyltransferase is thought to be a rate-limiting enzyme in phosphatidylcholine synthesis. This enzyme has not been well studied in intestine. We found that activity was greater in the non-lipid stimulated state (cytosolic form of the enzyme) than any previous tissue investigated (2.7 nM/min per mg protein). On addition of lysophosphatidylethanolamine, the enzyme only increased in activity 2.4-fold which is less than any previously reported tissue on lipid stimulation. As compared to liver, the enzyme was resistant to inhibition by chlorpromazine (gut, 100% activity remaining at 80 microM; 14% in liver). Tetracaine and propranolol were found to be impotent as inhibitors of the intestinal enzyme. Octanol-water partitioning showed that both chlorpromazine and tetracaine were hydrophobic, propranolol was not. pKa studies demonstrated that at the reaction pH, chlorpromazine would be uncharged. Physiologic experiments in which de novo phosphatidylcholine synthesis was either stimulated by bile duct fistulization and triacylglycerol infusion or suppressed by including phosphatidylcholine in a lipid infusion demonstrated that the enzyme (cytosolic enzyme) responded by decreasing Vmax but that the Km remained the same. In sum, these studies suggest that CTP:phosphocholine cytidylyltransferase in intestine is unique as compared to other tissues and that its response to a physiological stimulus is counter to that which would be adaptive.  相似文献   

6.
The CTP:phosphocholine cytidylyltransferase (CCT) governs the rate of phosphatidylcholine (PtdCho) biosynthesis, and its activity is governed by interaction with membrane lipids. The carboxy-terminus was dissected to delineate the minimum sequences required for lipid responsiveness. The helical domain is recognized as a site of lipid interaction, and all three tandem alpha-helical repeats from residues 257 through 290 were found to be required for regulation of enzymatic activity by this domain. Truncation of the carboxy-terminus to remove one or more of the alpha-helical repeats yielded catalytically compromised proteins that were not responsive to lipids but retained sufficient activity to accelerate PtdCho biosynthesis when overexpressed in vivo. The role of the helical region in lipid-activation was tested further by excising residues 257 through 309 to yield a protein that retained a 57-residue carboxy terminal domain fused to the catalytic core. This construct tested the hypothesis that the helical region inhibits activity in the absence of lipid rather than activates the enzyme in the presence of lipid. This hypothesis predicts constitutive activity for CCTalpha[Delta257-309]; however, this protein was tightly regulated by lipid with activities comparable to the full-length CCTalpha, in both the absence and presence of lipid. Activation of CCTalpha[Delta257-309] was dependent exclusively on anionic lipids, whereas full-length CCTalpha responded to either anionic or neutral lipids. Phosphatidic acid delivered in Triton X-100 micelles was the preferred activator of the second lipid-activation domain. These data demonstrate that CCTalpha can be regulated by lipids by two independent domains: (i) the three amphipathic alpha-helical repeats that interact with both neutral and anionic lipid mixtures and (ii) the last 57 residues that interact with anionic lipids. The results show that both domains are inhibitory in the absence of lipid and activating in the presence of lipid. Removal of both domains results in a nonresponsive, dysregulated enzyme with reduced activity. The data also demonstrate for the first time that the 57-residue carboxy-terminal domain in CCTalpha participates in lipid-mediated regulation and is sufficient for maximum activation of enzyme activity.  相似文献   

7.
Phosphatidylcholine (PC) synthesis in animal cells is generally controlled by cytidine 5'-triphosphate (CTP):phosphocholine cytidylyltransferase (CCT). This enzyme is amphitropic, that is, it can interconvert between a soluble inactive form and a membrane-bound active form. The membrane-binding domain of CCT is a long amphipathic alpha helix that responds to changes in the physical properties of PC-deficient membranes. Binding of this domain to membranes activates CCT by relieving an inhibitory constraint in the catalytic domain. This leads to stimulation of PC synthesis and maintenance of membrane PC content. Surprisingly, the major isoform, CCT alpha, is localized in the nucleus of many cells. Recently, a new level of its regulation has emerged with the discovery that signals that stimulate PC synthesis recruit CCT alpha from an inactive nuclear reservoir to a functional site on the endoplasmic reticulum.  相似文献   

8.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

9.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   

10.
BACKGROUND: The formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates is carried out by cytidylyltransferases, which utilize CTP to form activated CDP-alcohols or CMP-acid sugars plus inorganic pyrophosphate. Several cytidylyltransferases are related and constitute a conserved family of enzymes. The eukaryotic members of the family are complex enzymes with multiple regulatory regions or repeated catalytic domains, whereas the bacterial enzyme, CTP:glycerol-3-phosphate cytidylyltransferase (GCT), contains only the catalytic domain. Thus, GCT provides an excellent model for the study of catalysis by the eukaryotic cytidylyltransferases. RESULTS: The crystal structure of GCT from Bacillus subtilis has been determined by multiwavelength anomalous diffraction using a mercury derivative and refined to 2.0 A resolution (R(factor) 0.196; R(free) 0.255). GCT is a homodimer; each monomer comprises an alpha/beta fold with a central 3-2-1-4-5 parallel beta sheet. Additional helices and loops extending from the alpha/beta core form a bowl that binds substrates. CTP, bound at each active site of the homodimer, interacts with the conserved (14)HXGH and (113)RTXGISTT motifs. The dimer interface incorporates part of a third motif, (63)RYVDEVI, and includes hydrophobic residues adjoining the HXGH sequence. CONCLUSIONS: Structure superpositions relate GCT to the catalytic domains from class I aminoacyl-tRNA synthetases, and thus expand the tRNA synthetase family of folds to include the catalytic domains of the family of cytidylyltransferases. GCT and aminoacyl-tRNA synthetases catalyze analogous reactions, bind nucleotides in similar U-shaped conformations, and depend on histidines from analogous HXGH motifs for activity. The structural and other similarities support proposals that GCT, like the synthetases, catalyzes nucleotidyl transfer by stabilizing a pentavalent transition state at the alpha-phosphate of CTP.  相似文献   

11.
12.
The role of phosphorylation/dephosphorylation in the regulation of CTP:phosphocholine cytidylyltransferase activity was investigated. Incubation of post mitochondrial supernatant with cAMP-dependent protein kinase (50 units) led to an increased (28%) recovery of the cytidylyltransferase in the cytosolic fraction, while incubation with an intestinal alkaline phosphatase (20 units) led to an increased (61%) recovery in the microsomal fraction. When pure cytidylyltransferase was incubated with washed microsomes in the presence of cAMP-dependent protein kinase (133 units), the enzyme associated with the supernatant fraction increased (3.12 +/- 0.02 to 3.77 +/- 0.03 nmol/min/ml) while that of the microsomal fraction decreased (1.36 +/- 0.01 to 0.56 +/- 0.05 nmol/min/ml) by 2.5-fold. The increase in the cytidylyltransferase activity in the supernatant corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (40 units) decreased the cytidylyltransferase activity in the supernatant (3.61 +/- 0.08 to 2.88 +/- 0.07 nmol/min/ml) while the activity in the microsomal fraction increased (0.56 +/- 0.08 to 1.16 +/- 0.06 nmol/min/ml) by 2-fold. The decrease in the cytidylyltransferase activity in the supernatant corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of cytidylyltransferase with phosphatidylcholine vesicles in the presence of cAMP-dependent protein kinase (110 units) decreased the cytidylyltransferase activity by 30%. The decrease in cytidylyltransferase activity corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (20 units) resulted in a 41% increase in the cytidylyltransferase activity. The increase in cytidylyltransferase activity corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of the cytidylyltransferase with [gamma-32P] ATP and cAMP-dependent protein kinase led to incorporation of 32P into the serine residues of cytidylyltransferase. If the cytidylyltransferase were preincubated with alkaline phosphatase prior to incubation with cAMP-dependent protein kinase, 2-fold more 32P (0.2 mol P/mol cytidylyltransferase) was incorporated into the cytidylyltransferase. Collectively, this data is in agreement with a role for reversible phosphorylation in the regulation of cytidylyltransferase.  相似文献   

13.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.  相似文献   

14.
R B Cornell 《Biochemistry》1991,30(24):5873-5880
The activity of phosphocholine cytidylyltransferase (CT), the regulatory enzyme in phosphatidylcholine synthesis, is dependent on lipids. The enzyme, obtained from rat liver cytosol, was purified in the presence of Triton X-100 [Weinhold et al. (1986) J. Biol. Chem. 261, 5104]. The ability of lipids to activate CT when added as Triton mixed micelles was limited to anionic lipids. The relative effectiveness of the lipids tested suggested a dependence on the negative surface charge density of the micelles. The mole percent lipid in the Triton mixed micelle required for activation decreased as the net charge of the lipid varied from 0 to -2. Evidence for the physical association of CT with micelles and vesicles containing phosphatidylglycerol was obtained by gel filtration. The activation by micelles containing PG was influenced by the ionic strength of the medium, with a higher surface charge density required for activation at higher ionic strength. The micelle surface potential required for full activation of CT was calculated to be -43 mV. A specificity toward the structure of the polar group of the acidic lipids was not apparent. CT was activated by neutral lipids such as diacylglycerol or oleyl alcohol when included in an egg PC membrane, but the activities were reduced by dilution with as little as 10 mol % Triton. Thus Triton mixed micelles are not suitable for studying the activation of CT by these neutral lipid activators. We conclude that one way that lipid composition can control CT-membrane binding and activity is by changing the surface potential of the membrane. Other distinct mechanisms involved in the activation by neutral lipids are discussed.  相似文献   

15.
Phosphatidylglycerol and oleic acid had differential effects on cytidylyltransferase activity in cytosol and microsomes. The low-molecular-weight cytidylyltransferase in cytosol was stimulated more by phosphatidylglycerol than by oleic acid, whereas microsomal activity was stimulated more by oleic acid than by phosphatidylglycerol. Microsomal activity was stimulated by several unsaturated fatty acids but was not stimulated by saturated fatty acids. Bovine serum albumin decreased cytidylyltransferase activity in microsomes in the presence or absence of oleic acid but did not alter the activity measured in the presence of phosphatidylglycerol. The addition of oleic acid to albumin/microsome mixtures in amounts exceeding the binding capacity of albumin lead to complete recovery of the oleic acid stimulation. The addition of oleic acid to postmitochondrial supernatants resulted in a translocation of cytidylyltransferase activity from cytosol to microsome. The magnitude of the shift was severalfold greater with fetal preparations than adult. The free fatty acid content of microsomes increased coincident with the translocation. Bovine serum albumin, added to postmitochondrial supernatants, caused a release of cytidylyltransferase from microsomes to cytosol and a corresponding decrease in microsomal free fatty acid content. The amount of cytidylyltransferase activity in microsomes increased shortly after birth. The increase was accompanied by an increase in free fatty acid content of the microsomes. The increase in cytidylyltransferase activity and free fatty acids which occurred in vivo following birth was nearly identical to that obtained by adding oleic acid to postmitochondrial supernatants from fetal lung. We conclude that free fatty acids may affect the intracellular activity of cytidylyltransferase by promoting the translocation of inactive cytosolic forms to microsomes as well as by stimulating microsomal bound activity.  相似文献   

16.
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol.  相似文献   

17.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

18.
Addition of oleate, oleyl alcohol, or palmitate to HeLa cell medium resulted in a rapid stimulation of PC synthesis and activation of CTP: phosphocholine cytidylyltransferase. Stimulation was optimal with 0.35 mM oleate, 0.3 mM oleyl alcohol and 5 mM palmitate, or 1 mM palmitate if EGTA were added to the medium. The cytidylyltransferase was activated by translocation of the inactive cytosolic form to membranes. In untreated cells approx. 30% of the total cytidylyltransferase was membrane bound, while in treated cells, 80-90% was membrane associated. Addition of bovine serum albumin (10 mg/ml) to cells previously treated with oleate (0.35 mM) rapidly removed cellular fatty acid, and the membrane-bound cytidylyltransferase activity returned to approx. 30%. Similar results were obtained by extraction of membranes with albumin in vitro. Although 95% of the free fatty acid was extracted, 30-40% of the membrane cytidylyltransferase remained bound. Translocation of cytidylyltransferase between isolated cytosol and microsomal fractions was promoted by addition of oleate, palmitate, oleyl alcohol, and monoolein. Addition of diacylglycerol, lysophosphatidylcholine, lysophosphatidylethanolamine, calcium palmitate, and detergents such as Triton X-100, cholate or Zwittergent did not stimulate translocation of the enzyme. Addition of oleoyl-CoA promoited translocation, however, 40% of it was hydrolyzed releasing free oleic acid. Cytosolic cytidylyltransferase bound to microsomes pre-treated with phospholipase C, which had 7-fold elevated diacylglycerol content. Fatty acid-promoted translocation was blocked by Triton X-100, but not by 1 M KCl. These results suggest that a variety of compounds with differing head group size and charge, and number of hydrocarbon chains can function as translocators, and that hydrophobic rather than ionic interactions mediate the binding of cytidylyltransferase to membranes.  相似文献   

19.
The activity of the low molecular weight form of cytidylyltransferase from fetal lung cytosol and adult liver cytosol was stimulated more by phosphatidylcholine-oleic acid (1:1 molar ratio) vesicles than by phosphatidylglycerol vesicles. Phosphatidylcholine alone did not stimulate the activity, while oleic acid alone produced only slight stimulation. Vesicles prepared from phosphatidylinositol, phosphatidylglycerol-cholesterol (2:1) and phosphatidylglycerol-phosphatidylcholine (1:1) all stimulated the activity to the same extent. Phosphatidylcholine-oleic acid vesicles (molar ratio 2:1) produced less stimulation than 1:1 vesicles. Phosphatidylcholine-palmitic acid vesicles (2:1) were about 50% as active as the corresponding phosphatidylcholine-oleic acid vesicles. All vesicles were in the size range of small unilamellar vesicles as judged by Sephacryl S-1000 chromatography. Stimulation also occurred when phosphatidylcholine vesicles and oleic acid were added separately to the assay. The stimulation by phospholipid vesicles was correlated with the ability of the vesicles to bind cytidylyltransferase, determined by sucrose density centrifugation of the enzyme-vesicles mixtures. We conclude that the stimulation of soluble cytidylyltransferase occurs through binding of the enzyme to anionic membrane surfaces. Suitable anionic membranes can be prepared either from anionic phospholipids, or by the addition of anionic lipids (unesterified fatty acids or phosphatidylglycerol) to phosphatidylcholine.  相似文献   

20.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in de novo synthesis of phosphatidylcholine (PC). The lung requires a steady synthesis of PC for lung surfactant of which disaturated PC is the essential active agent. Surfactant synthesis occurs in alveolar type II cells. Studies with non-pulmonary cells have suggested that CCT is both a nuclear and cytoplasmic protein. The unusual requirements of the lung for PC synthesis and, therefore, CCT activity suggest a unique mechanism of regulation and possibly localization of CCT. The localization of CCT alpha in lung epithelial cells and, of greater consequence, lung tissues are yet unknown. Three isoforms of CCT have been identified. Herein we investigated the localization of the ubiquitously expressed CCT alpha isoform. To ascertain CCT alpha localization in lungs and lung-related epithelial cells, we employed a number of localization methods. Immunogold electron microscopy using polyclonal antibodies raised to either the carboxyl terminus, catalytic domain, or amino terminus of CCT alpha localized CCT alpha mostly to the exterior plasma membrane or regions of the endoplasmic reticulum (ER) in both A549 and MLE-15 epithelial lung cell lines and primary cultures of fetal rat lung epithelial cells. In contrast to other studies, little or no nuclear labeling was observed. Indirect immunofluorescence of these cells with anti-CCT alpha antibodies resulted in a similar distribution. Indirect visualization of both hemagglutinin- and FLAG-tagged CCT alpha as well as direct visualization of enhanced green fluorescence protein-CCT alpha fusion protein corroborated a cytoplasmic localization of CCT alpha in pulmonary cells. Moreover, analysis of lung tissue from fetal and adult mouse by either immunogold electron microscopy or indirect immunofluorescence yielded a strong cytoplasmic CCT alpha signal with virtually no nuclear localization in epithelial cells lining the airways. The cytoplasmic localization of CCT alpha in type II cells was further substantiated with transgenic mice overexpressing FLAG-tagged CCT alpha using the lung-specific human surfactant protein C (SP-C) promoter. We conclude that CCT alpha does not localize to the nucleus in pulmonary tissues, and, therefore, nuclear localization of CCT alpha is not a universal event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号