首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

2.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

3.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

4.
  • 1 This laboratory study examined the effect of a gradient of UV‐B radiation (280–320 nm) on photosynthesis and food quality of periphyton, the trophic base of many freshwater benthic communities. Four irradiances of UV‐B (0, 0.6, 1.2, and 2.3 W m‐2) were delivered by UV‐B lamps (313 nm peak irradiance) over a 13‐day period in the first experiment and over a 4‐h period in the second experiment. These irradiances were roughly equivalent to 0, 1, 2, and 4 times the ambient biologically effective (DNA) midsummer, midday UV‐B irradiance in Tennessee.
  • 2 Rates of photosynthesis and photosynthetic pigments were significantly reduced by irradiances greater than ambient during the 13‐day experiment, suggesting that food supply rates to grazers would be depressed by increases in current UV‐B levels. Effects on community structure were minor, but mean diatom cell size decreased at higher UV‐B irradiances.
  • 3 Irradiated periphyton was fed in surplus to juvenile snails (Physella gyrina) in the first experiment as a bioassay for food quality. Snail growth was the same on all four diets, suggesting that UV‐B did not affect food quality. Nitrogen and phosphorus content of the periphyton were not affected by UV‐B, either.
  • 4 Photosynthesis by low‐biomass periphyton in the second experiment was significantly depressed by irradiances above ambient after only 4 h. Photosynthesis by the high biomass periphyton was not significantly affected by UV‐B, suggesting that self‐shading reduced UV‐B effects.
  相似文献   

5.
We investigated the responses of photon-saturated photosynthesis rate (P sat) and its simultaneous acclimation of anatomy and nitrogen use patterns of current needles of Korean pine (Pinus koraiensis) seedlings grown under factorial combinations of two nitrogen levels and irradiances. Although N supply resulted in a significant increase of N content in needles under both irradiances, the increase of P sat tended to be suppressed only in shade (S). The significant increase of P sat in full sunlight (O) was associated with the increase of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and chlorophyll (Chl) contents. In contrast, small increase of Chl content and no increase of RuBPCO content were found in S (90 % cut of full irradiance), which would result in a small increase of P sat. This result suggests that extra N is stocked in needles under shade for the growth in next season. With N supply, a significant decrease of specific leaf area (SLA) was detected only in O. This decrease of SLA was due to the increase of density of needle. Furthermore, the increase of needle density was not due to the increased number and size of mesophyll cells, but the increased density of each mesophyll cell. Therefore, although SLA changed in O, the change did not involve anatomical adaptation to use increased N effectively, at least observable by light microscopy. Hence, even though the SLA would change, N deposition will improve the photosynthetic capacity of Korean pine seedlings, not through the development of needle anatomy but through improvement of the allocation of N in both irradiances.  相似文献   

6.
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance.  相似文献   

7.
Young plants of Laminaria hyperborea collected from the field were grown for 2·5–4 weeks in blue, green, red and white (simulated underwater) light fields at 5, 20 and 100 μmol m-2s-1. The absolute concentrations of all pigments showed little variation with irradiance in green and white light, but decreased in high irradiances of red and blue light. The ratio of fucoxanthin to chlorophyll a also increased in the latter treatments, as did the chlorophyll c:a ratio in bright red light. There was little difference in the action spectrum for photosynthesis between the different light qualities at any one irradiance, but the action spectra for plants grown at 100 μmol m-2s-1 showed deeper troughs and higher peaks than those for plants grown at lower irradiances. Gross photosynthesis per unit of thallus area at 10 μmol m-2s-1 decreased in plants with low total pigment concentrations, but the photosynthesis per unit of pigment concentration increased. This suggestion of self-shading of pigment molecules within the algal thalli was supported by a flattening of the action spectrum in plants with higher chlorophyll a contents. The variations observed between the action spectra for different plants could thus be attributed to the decrease in pigment content at high irradiances, and not to the light quality in which the plants were grown.  相似文献   

8.
The initial (in vivo) and total (activity present after preincubation with CO2 and Mg2+) activities of ribulose bisphosphate carboxylase were both assayed in extracts of leaves of soybean (Glycine max) plants which had been grown under 4 different irradiance levels. The total carboxylase activity per unit leaf area decreased with decreased irradiance during growth but was not different on a dry weight basis. The initial activity as a percentage of the total activity was unchanged (approximately 95%) except in leaves of plants grown at the lowest irradiance (74%). When the plants grown at the lowest irradiance were exposed to high irradiance, the initial activity was increased to 93% of the total. Light saturated rates of photosynthesis per unit leaf area were lower and saturated at lower irradiance for plants grown at lower irradiances. Initial carboxylase activity was correlated closely (r2=0.84) with leaf photosynthesis rate on a dry weight basis.  相似文献   

9.
1. Streambed light regimes change dramatically when riparian trees gain leaves in spring and lose them in autumn. This study examined the effect of these changes on periphyton photosynthetic characteristics, primary production, and light utilisation efficiency in two eastern Tennessee streams. 2. Photosynthesis–irradiance responses were measured at intervals covering leaf emergence and abscission in spring and autumn. Photosynthetic efficiency (αchl) increased with declining streambed irradiances during spring leaf emergence, but returned to pre‐emergence values after autumn leaf fall. The onset of photosaturation (Ik) displayed the opposite pattern, decreasing during leaf emergence and increasing after leaf fall. Both αchl and Ik were closely associated (P < 0.01) with daily integrated streambed irradiance, as were periphyton carotenoids. Internal shading by photoprotective carotenoids is hypothesised to account for lower αchl when streambed irradiances are high. 3. An in situ shading experiment confirmed that the temporal changes observed in periphyton photosynthetic characteristics and carotenoids were primarily the result of changing light levels and not other environmental factors (e.g. nutrients, temperature). 4. Daily chlorophyll‐specific primary production (PPchl) was calculated with PI models and recorded streambed irradiances. In both streams, PPchl was the highest in early spring when trees were leafless, and then declined markedly as leaves emerged, reaching a minimum in summer. PPchl increased after leaf abscission, but was still lower than it was in early spring, when the sun was higher and daylength was longer. A hyperbolic tangent equation fit to PPchl and daily integrated irradiance (r2=0. 85) suggested that primary production was light saturated at 4–8 mol m–2 d–1. 5. Light utilisation efficiency (Ψ) increased 10‐fold during leaf emergence. Photosaturation at high irradiances and photoacclimation at lower irradiances were responsible for a negative hyperbolic relationship between Ψ and daily integrated irradiance.  相似文献   

10.
Photosynthetic characteristics at high measurement irradiance were analyzed for single leaves of two C3 and one C4 species grown under twenty one combinations of irradiance level, irradiance duration, and air temperature in order to test the idea that photosynthetic characteristies developed by leaves in different environments are controlled by the daily amount of photosynthesis. Photosynthetic rates per unit area and mesophyll conductances at 25°C and air levels of CO2 and O2, and parameters for two photosynthesis models were used to characterize the photosynthetic properties of the leaves. Leaves with highest values of the photosynthetic parameters for each species were often developed in environments with irradiance levels below saturation for photosynthesis, and with only 12 hours of irradiance per day. Lower air temperature during growth increased the photosynthetic characteristics for a given irradiance regime. Photosynthetic characteristics had higher correlation coefficients with daily photosynthesis of mature leaves divided by 24-hour leaf elongation rates of young leaves, than with daily photosynthesis alone, indicating that photosynthetic characteristics may be related to a balance between photosynthesis and leaf expansion.  相似文献   

11.
Irradiance-dependent rates of photosynthesis and cell division of six species of microalgae isolated from the benthos, plankton and sea ice microbial community in McMurdo Sound, Antarctica were compared. Microalgae isolated from different photic environments had distinct photosynthetic and growth characteristics. For benthic and ice algae, photosynthesis saturated at 6 to 20 μE.m?2.s?1 and was photoinhibited at 10 to 80 μE.m?2.s?1 while for the planktonic algae, saturation irradiances were up to 13 times higher and photoinhibition was not detected. The slope of the light-limited portion of the P-I relationship was up to 50 times greater for the benthic algae than for either the ice or planktonic algae suggesting that benthic algae used the low irradiances more efficiently for carbon uptake. Cell division was dependent on the incubation irradiance for all but one microalga examined. The dependence of division rates on irradiance was however much smaller than for carbon uptake, suggesting that cell division buffers the influence of short term variations of irradiance on cellular metabolism.  相似文献   

12.
Photosynthetic characteristics at high measurement irradiance were analyzed for single leaves of two C3 and one C4 species grown under twenty one combinations of irradiance level, irradiance duration, and air temperature in order to test the idea that photosynthetic characteristics developed by leaves in different environments are controlled by the daily amount of photosynthesis. Photosynthetic rates per unit area and mesophyll conductances at 25°C and air levels of CO2 and O2, and parameters for two photosynthesis models were used to characterize the photosynthetic properties of the leaves. Leaves with highest values of the photosynthetic parameters for each species were often developed in environments with irradiance levels below saturation for photosynthesis, and with only 12 hours of iradiance per day. Lower air temperature during growth increased the photosynthetic characteristics for a given irradiance regime. Photosynthetic characteristics had higher correlation coefficients with daily photosynthesis of mature leaves divided by 24-hour leaf elongation rates of young leaves, than with daily photosynthesis alone, indicating that photosynthetic characteristics may be related to a balance between photosynthesis and leaf expansion.  相似文献   

13.
Effects of polyploidy on photosynthesis   总被引:2,自引:0,他引:2  
In polyploid plants the photosynthetic rate per cell is correlated with the amount of DNA per cell. The photosynthetic rate per unit leaf area is the product of the rate per cell times the number of photosynthetic cells per unit area. Therefore, the photosynthetic rate per unit leaf area will increase if there is a less than proportional increase in cell volume at higher ploidal levels, or if cell packing is altered to allow more cells per unit leaf area. In autopolyploids (Medicago sativa, C3 species, and Pennisetum americanum, C4 species) there is a doubling of photosynthesis per cell and of cell volume in the tetraploid compared to the diploid. However, there is a proportional decrease in number of cells per unit leaf area with this increase in ploidy such that the rate of photosynthesis per leaf area does not change. There is more diversity in the relationship between ploidal level (gene dosage) and photosynthetic rates per unit leaf area in allopolyploids. This is likely to reflect the effects of natural selection on leaf anatomy, and novel genetic interactions from contributed genomes which can occur with allopolyploidy. In allopolyploid wheat (C3 species) a higher cell volume per unit DNA at the higher ploidal level is negatively correlated with photosynthesis rate per unit leaf area. Although photosynthesis per cell increases with ploidy, photosynthesis per leaf area decreases, being lowest in the allohexaploid, cultivated bread wheat (Triticum aestivum). Alternatively, doubling of photosynthetic rate per cell with doubling of DNA, with apparent natural selection for decreased cell volume per unit DNA, results in higher rates of photosynthesis per leaf area in octaploid compared to tetraploid Panicum virgatum (C4) which may be a case of allopolyploidy. Similar responses probably occur in Festuca arundinacea. Therefore, in some systems anatomical factors affecting photosynthesis are also affected by ploidal level. It is important to evaluate that component as well as determining the effect on biochemical processes. Current information on polyploidy and photosynthesis in several species is discussed with respect to anatomy, biochemistry and bases for expressing photosynthetic rates.Abbreviations Chl chlorophyll - RuBPC ribulose-1,5-bisphosphate carboxylase  相似文献   

14.
Factors that contribute to interspecific variation in photosynthetic nitrogen-use efficiency (PNUE, the ratio of CO2 assimilation rate to leaf organic nitrogen content) were investigated, comparing ten dicotyledonous species that differ inherently in specific leaf area (SLA, leaf area:leaf dry mass). Plants were grown hydroponically in controlled environment cabinets at two irradiances (200 and 1000 μmol m–2 s–1). CO2 and irradiance response curves of photosynthesis were measured followed by analysis of the chlorophyll, Rubisco, nitrate and total nitrogen contents of the leaves. At both irradiances, SLA ranged more than twofold across species. High-SLA species had higher in situ rates of photosynthesis per unit leaf mass, but similar rates on an area basis. The organic N content per unit leaf area was lower for the high-SLA species and consequently PNUE at ambient light conditions (PNUEamb) was higher in those plants. Differences were somewhat smaller, but still present, when PNUE was determined at saturating irradiances (PNUEmax). An assessment was made of the relative importance of the various factors that underlay interspecific variation in PNUE. For plants grown under low irradiance, PNUEamb of high-SLA species was higher primarily due to their lower N content per unit leaf area. Low-SLA species clearly had an overinvestment in photosynthetic N under these conditions. In addition, high SLA-species allocated a larger fraction of organic nitrogen to thylakoids and Rubisco, which further increased PNUEamb. High-SLA species grown under high irradiance showed higher PNUEamb mainly due to a higher Rubisco specific activity. Other factors that contributed were again their lower contents of Norg per unit leaf area and a higher fraction of photosynthetic N in electron transport and Rubisco. For PNUEmax, differences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in␣photosynthetic compounds (for low-light plants) and a higher Rubisco specific activity (for high-light grown plants). Received: 11 October 1997 / Accepted: 9 April 1998  相似文献   

15.
We investigated the composition of benthic microbial mats in permanently ice-covered Lake Hoare, Antarctica, and their irradiance vs. photosynthetic oxygen exchange relationships. Mats could be subdivided into three distinct depth zones: a seasonally ice-free “moat” zone and two under-ice zones. The upper under-ice zone extended from below the 3.5 m thick ice to approximately 13 m and the lower from below 13 m to 22 m. Moat mats were acclimated to the high irradiance they experienced during summer. They contained photoprotective pigments, predominantly those characteristic of cyanobacteria, and had high compensation and saturating irradiances (Ec and Ek) of 75 and 130 μmol photons·m−2·s−1, respectively. The moat mats used light inefficiently. The upper under-ice community contained both cyanobacteria and diatoms. Within this zone, biomass (as pigments) increased with increasing depth, reaching a maximum at 10 m. Phycoerythrin was abundant in this zone, with shade acclimation and efficiency of utilization of incident light increasing with depth to a maximum of 0.06 mol C fixed·mol−1 incident photons under light-limiting conditions. Precipitation of inorganic carbon as calcite was associated with this community, representing up to 50% of the carbon sequestered into the sediment. The lower under-ice zone was characterized by a decline in pigment concentrations with depth and an increasing prevalence of diatoms. Photosynthesis in this community was highly shade acclimated and efficient, with Ec and Ek below 0.5 μmol·m−2·s−1 and 2 μmol·m−2·s−1, respectively, and maximum yields of 0.04 mol C fixed·mol−1 incident quanta. Carbon uptake in situ by both under-ice and moat mats was estimated at up to 100 and 140 mg·m−2·day−1, based on the photosynthesis–irradiance curves, incident irradiance, and light attenuation by ice and the water column.  相似文献   

16.
This study investigated the influence of light on the distributional limits of Bostrychia scorpioides and Catenella caespitosa within a low amplitude intertidal zonation in the Palmones estuary, Spain. Changes in photosynthesis- and growth-irradiance curves and pigment content were examined ex situ at irradiances found in their natural habitat (10–230 µmol photons m?2 s?1). The highest maximum photosynthesis rate (Pm) and photosynthetic efficiency (α) were found between 20–40 µmol photons m?2 s?1 in both species. Bostrychia scorpioides, the uppermost intertidal species, had a higher Pm, α, dark respiration rate and light compensation point (Ec) than C. caespitosa at all acclimation irradiances. Net photosynthetic rates measured at their respective acclimation irradiances showed photosynthetic responses of B. scorpioides to be maximized at high irradiances, while in C. caespitosa they did not change. Higher growth rates were obtained in C. caespitosa than in B. scorpioides, which may be related to its lower thallus specific carbon content. When irradiance decreased, the chlorophyll a content of B. scorpioides increased whereas in C. caespitosa R-phycoerythrin increased. Ec for growth of B. scorpioides coincided with the irradiance at its lower distributional limit in the estuary, below which this species showed losses in biomass. However, in C. caespitosa the sustained growth ex situ at saturating irradiances contrasts with its absence from the upper intertidal zone, where similar light regimes occur. We demonstrated that while light clearly restricts the growth of B. scorpioides to the uppermost intertidal zone, this environmental factor would not prevent C. caespitosa from growing at higher levels.  相似文献   

17.
Nitrite uptake and oxygenic photosynthesis by cultures of Chlamydomonas sp. isolated from Lake Superior were measured at different irradiances in order to compare predictive models of nitrite uptake and to assess the proportion of photoreductant (measured as oxygen evolution, mol × 4 eq. mol?1) that is allocated to nitrite assimilation (measured as nitrite uptake, mol × 6 eq. mol?1). These measurements are analogous to measurements of carbon fixation (CO2 uptake) at different irradiances and photosynthetic activities. Nitrite uptake as a function of irradiance did not follow Michaelis-Menten kinetics as proposed for nitrate by MacIsaac and Dugdale (1972) because of inhibition at high irradiances. The Haldane equation described nitrite uptake better. Nitrite uptake as a function of oxygenic photosynthesis followed Michaelis-Menten kinetics. Irradiance-dependent (Haldane) and photosynthesis-dependent models described nitrite uptake equally well. We suggest that nitrite is taken up and assimilated in response to intracellular concentrations of photoreductant that are directly proportional to photosynthetic activity and are related indirectly to irradiance. This contention is supported by photosynthesis-dependent nitrite uptake (Michaelis-Menten) at both light-limited and photoinhibited photosynthetic activities. This is consistent conceptually with deactivation of light traps at high irradiance levels. The proportion of photoreductant allocated to nitrite uptake and assimilation increased markedly at low irradiance levels. This indicates that cells synthesize important N-containing biomolecules across a broader range of irradiance levels than fixation of carbon for synthesis of energy storage and structural products.  相似文献   

18.
Photosynthetic rates and related anatomical characteristics of leaves developed at three levels of irradiance (1200, 300 and 80 umol · m–2 · s–1) were determined in the C4-like species Flaveria brownii A.M. Powell, the C3–C4-intermediate species F. linearis Lag., and the F1 hybrid between them (F. brownii × F. linearis). In the C3–C4 and F1 plants, increases in photosynthetic capacity per unit leaf area were strongly correlated with changes in mesophyll area per unit leaf area. The C4-like plant F. brownii, however, showed a much lower correlation between photosynthetic capacity and mesophyll area per unit leaf area. Plants of F. brownii developed at high irradiance showed photosynthetic rates per unit of mesophyll cell area 50% higher than those plants developed at medium irradiance. These results along with an increase in water-use efficiency are consistent with an increase of C4 photosynthesis in high-irradiance-grown F. brownii plants, whereas in the other two genotypes such plasticity seems to be absent. Photosynthetic discrimination against 13C in the three genotypes was less at high than at low irradiance, with the greatest change occurring in F. brownii. Discrimination against 13C expressed as 13C was linearly correlated (r 2 = 0.81; P<0.001) with the ratio of bundle-sheath volume to mesophyll cell area when all samples from the three genotypes were combined. This tissue ratio increased for F. brownii and the F1 hybrid as growth irradiance increased, indicating a greater tendency towards Kranz anatomy. The results indicated that F. brownii had plasticity in its C4-related anatomical and physiological characteristics as a function of growth irradiance, whereas plasticity was less evident in the F1 hybrid and absent in F. linearis.Abbreviations A leaf surface area - Ama, Amn, Alm total ma, mn or lm cell surface area - bs vascular bundle sheath - lm large spongy-mesophyll cells - ma mesophyll cells adjacent to bundle sheath - mn mesophyll cells not adjacent to bundle sheath - Pn net photosynthesis - (H, M, L) PPFD (high, medium, low) photosynthetic photon flux density - SLDW specific leaf dry wight - Vbs bs volume - V(ma + mn + bs) total photosynthetic tissue volume - 13C 13C discrimination We thank Mrs. Lisa Smith for technical assistance in light microscopy and Dr. Ned Friedman (Department of Botany, University of Georgia, Athens, GA, USA) for the use of digitizing equipment. Participation of Dr. J.L. Araus in this work was supported by a grant Beca de Especialización para Doctores y Tecnólogos en el Extranjero, from Ministerio de Educatión y Ciencia, Spain.  相似文献   

19.
The survivorship of dipterocarp seedlings in the deeply shaded understorey of South‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. To investigate the effect of elevated CO2 upon photosynthesis and growth under sunflecks, seedlings of Shorealeprosula were grown in controlled environment conditions at ambient or elevated CO2. Equal total daily photon flux density (PFD) (~7·7 mol m?2 d?1) was supplied as either uniform irradiance (~170 µmol m?2 s?1) or shade/fleck sequences (~30 µmol m?2 s?1/~525 µmol m?2 s?1). Photosynthesis and growth were enhanced by elevated CO2 treatments but lower under flecked irradiance treatments. Acclimation of photosynthetic capacity occurred in response to elevated CO2 but not flecked irradiance. Importantly, the relative enhancement effects of elevated CO2 were greater under sunflecks (growth 60%, carbon gain 89%) compared with uniform irradiance (growth 25%, carbon gain 59%). This was driven by two factors: (1) greater efficiency of dynamic photosynthesis (photosynthetic induction gain and loss, post‐irradiance gas exchange); and (2) photosynthetic enhancement being greatest at very low PFD. This allowed improved carbon gain during both clusters of lightflecks (73%) and intervening periods of deep shade (99%). The relatively greater enhancement of growth and photosynthesis at elevated CO2 under sunflecks has important potential consequences for seedling regeneration processes and hence forest structure and composition.  相似文献   

20.
We grew velvetleaf (Abutilon theophrasti Medic.) and cotton (Gossypium hirsutum L. var. Stoneville 213) at three irradiances and determined the photosynthetic responses of single leaves to a range of six irradiances from 90 to 2000 μeinsteins m−2sec−1. In air containing 21% O2, velvetleaf and cotton grown at 750 μeinsteins m−2sec−1 had maximum photosynthetic rates of 18.4 and 21.9 mg of CO2 dm−2hr−1, respectively. Maximum rates for leaves grown at 320 and 90 μeinsteins m−2sec−1 were 15.3 and 10.3 mg of CO2 dm−2hr−1 in velvetleaf and 12 and 6.7 mg of CO2 dm−2hr−1 in cotton, respectively. In 1 O2, maximum photosynthetic rates were 1.5 to 2.3 times the rates in air containing 21% O2, and plants grown at medium and high irradiance did not differ in rate. In both species, stomatal conductance was not significantly affected by growth irradiance. The differences in maximum photosynthetic rates were associated with differences in mesophyll conductance. Mesophyll conductance increased with growth irradiance and correlated positively with mesophyll thickness or volume per unit leaf area, chlorophyll content per unit area, and photosynthetic unit density per unit area. Thus, quantitative changes in the photosynthetic apparatus help account for photosynthetic adaptation to irradiance in both species. Net assimilation rates calculated for whole plants by mathematical growth analysis were closely correlated with single-leaf photosynthetic rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号