首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The inhibitory effect of BV-araU on DNA synthesis in human embryonic lung cells infected with varicella-zoster virus (VZV) or herpes simplex virus type 1 (HSV-1) was compared with that of acyclovir. Cellular uptake of [3H]thymidine and its incorporation into DNA was markedly stimulated by the infection with VZV or HSV-1, suggesting that the incorporation was mainly due to viral DNA synthesis. DNA synthesis in VZV-infected cells was dose-dependently suppressed by BV-araU and acyclovir, although cellular uptake of [3H]thymidine decreased in cells treated with a high concentration of drugs for an extended time. DNA synthesis in HSV-1-infected cells was also markedly inhibited by both drugs in a dose-dependent manner, without affecting cellular uptake of [3H]thymidine. The concentration of drugs inhibiting DNA synthesis was well correlated to their in vitro anti-VZV and anti-HSV-1 activities. The inhibitory concentration of BV-araU for DNA synthesis in VZV-infected cells was one-thousandth of that of acyclovir. Our results suggest that the antiviral action of BV-araU against VZV and HSV-1 is based on the inhibition of DNA synthesis in herpesvirus-infected cells.  相似文献   

2.
We studied antiviral effects of 1-β-d -arabinofuranosyl-5-[(E)-2-bromovinyl]uracil (BV-araU) and acyclovir against varicella-zoster virus (VZV) multiplication varying the length or timing of drug exposure. First, residual anti-VZV effect of drugs, exposed to cells for various periods followed by incubation in drug-free medium, was determined by the plaque inhibition assay. None of the drugs showed activity when removed within 24 hr of incubation. Weakened efficacy of BV-araU was seen in 2 days of treatment. When it was removed after 3 or 4 days, the ED50 was as low as that for cultures in which the drug was not removed. Still, plaque inhibition was not complete even at high concentrations. Acyclovir inhibited plaque formation only by 50% or less in 2 days of treatment. It gave a much higher ED50 in 3 days of treatment than that observed without drug removal. In the experiments, in which BV-araU was added to VZV-infected cells 1 day after infection, BV-araU immediately suppressed increase in the number of infective centers at a concentration of 0.001 μg/ml, and reduced it at concentrations of 0.01 μg/ml or higher. The reduction of infective centers was seen with a dose-dependent manner when added 2 or 3 days after infection. BV-araU stimulated the decrease in the number of infective centers when added 4 days after infection. This inhibitory effect of acyclovir was very weak. Microscopic observations supported the above results. BV-araU was still much superior to acyclovir in the anti-VZV effect when the length and timing of drug exposure were varied.  相似文献   

3.
1-beta-D-Arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) and nine other antiherpesviral nucleoside analogues were compared for their potencies against four strains of varicella-zoster virus (VZV) on three different cell lines: HEL cells, Vero cells, and MS cells established from a human malignant schwannoma. In contrast to the activity against herpes simplex virus type 1 previously reported, BV-araU showed extremely marked antiviral activity against VZV even on Vero cells. ED50, 50% plaque reduction dose, of BV-araU for VZV was 0.20-3.1 and 0.14-0.63 ng/ml on Vero cells and on HEL cells, respectively. Potency of BV-araU on MS cells was similar to that on these cell lines. There was not significant variation in anti-VZV activities of other nucleoside analogues on these three different cell lines except a few combinations of VZV strain and test compound.  相似文献   

4.
Varicella zoster virus (VZV) is usually associated with mild to moderate illness in immunocompetent patients. However, older age and immune deficiency are the most important risk factors linked with virus reactivation and severe complications. Treatment of VZV infections is based on nucleoside analogues, such as acyclovir (ACV) and its valyl prodrug valacyclovir, penciclovir (PCV) as its prodrug famciclovir, and bromovinyldeoxyuridine (BVDU; brivudin) in some areas. The use of the pyrophosphate analogue foscarnet (PFA) is restricted to ACV-resistant (ACV(r)) VZV infections. Since antiviral drug resistance is an emerging problem, we attempt to describe the contributions of specific mutations in the viral thymidine kinase (TK) gene identified following selection with ACV, BVDU and its derivative BVaraU (sorivudine), and the bicyclic pyrimidine nucleoside analogues (BCNAs), a new class of potent and specific anti-VZV agents. The string of 6 Cs at nucleotides 493 to 498 of the VZV TK gene appeared to function as a hot spot for nucleotide insertions or deletions. Novel amino acid substitutions (G24R and T86A) in VZV TK were also linked to drug resistance. Six mutations were identified in the "palm domain" of VZV DNA polymerase in viruses selected for resistance to PFA, PCV, and the 2-phophonylmethoxyethyl (PME) purine derivatives. The investigation of the contributions of specific mutations in VZV TK or DNA polymerase to antiviral drug resistance and their impacts on the structures of the viral proteins indicated specific patterns of cross-resistance and highlighted important differences, not only between distinct classes of antivirals, but also between ACV and PCV.  相似文献   

5.
(E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) is a potent inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV). Its mechanism of action is based on a specific conversion to its 5'-mono- and 5'-diphosphate derivative by HSV-1- and VZV-encoded thymidine kinase, and after further conversion to its 5'-triphosphate derivative, inhibition of the viral DNA polymerase and eventual incorporation into the viral DNA. Recently, a new structural class of bicyclic pyrimidine nucleoside analogues (designated BCNAs) with highly specific and selective anti-VZV activity in cell culture has been discovered. The compounds need a long alkyl or alkylaryl side-chain at the base moiety for pronounced biological activity. This property makes these compounds highly lipophilic. They are also endowed with fluorescent properties when exposed to light with short UV wavelength. In striking contrast to BVDU, the members of this class of compounds are active only against VZV, but not against any other virus, including the closely related HSV-1, HSV-2 and cytomegalovirus. The most active compounds inhibit VZV replication at subnanomolar concentrations and are not toxic at high micromolar concentrations. The compounds lose their antiviral activity against thymidine kinase (TK)-deficient VZV strains, pointing to a pivotal role of the viral TK in their activation (phosphorylation). Kinetic studies with purified enzymes revealed that the compounds were recognized by VZV TK as a substrate, but not by HSV-1 TK, nor by cytosolic or mitochondrial TK. VZV TK is able to phosphorylate the test compounds not only to their corresponding 5'-mono- but also to their 5'-diphosphate derivatives. These data may readily explain and rationalize the anti-VZV selectivity of the BCNAs. There is no clear-cut correlation between the antiviral potency of the compounds and their affinity for VZV TK, pointing to a different structure/activity relationship of the eventual antiviral target of these compounds. The compounds are stable in solution and, in contrast to BVDU, not susceptible to degradation by thymidine phosphorylase. The bicyclic pyrimidine nucleoside analogues represent an entirely new class of highly specific anti-VZV compounds that should be further pursued for clinical development.  相似文献   

6.
Cells infected with varicella-zoster virus (VZV) express a viral ribonucleotide reductase which is distinct from that present in uninfected cells. VZV open reading frames 18 and 19 (ORF18 and ORF19) are homologous to the herpes simplex virus type 1 genes encoding the small and large subunits of ribonucleotide reductase, respectively. We generated recombinant VZV by transfecting cultured cells with four overlapping cosmid DNAs. To construct a virus lacking ribonucleotide reductase, we deleted 97% of VZV ORF19 from one of the cosmids. Transfection of this cosmid with the other parental cosmids yielded a VZV mutant with a 2.3-kbp deletion confirmed by Southern blot analysis. Virus-specific ribonucleotide reductase activity was not detected in cells infected with VZV lacking ORF19. Infection of melanoma cells with ORF19-deleted VZV resulted in plaques smaller than those produced by infection with the parental VZV. The mutant virus also exhibited a growth rate slightly slower than that of the parental virus. Chemical inhibition of the VZV ribonucleotide reductase has been shown to potentiate the anti-VZV activity of acyclovir. Similarly, the concentration of acyclovir required to inhibit plaque formation by 50% was threefold lower for the VZV ribonucleotide reductase deletion mutants than for parental virus. We conclude that the VZV ribonucleotide reductase large subunit is not essential for virus infection in vitro; however, deletion of the gene impairs the growth of VZV in cell culture and renders the virus more susceptible to inhibition by acyclovir.  相似文献   

7.
Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.  相似文献   

8.
The DNA polymerase activity, and susceptibilities to 9-beta-D-arabinofuranosyladenine(ara-A) and 1-beta-arabinofuranosylcytosine(ara-C) of a phosphonoacetic acid resistant mutant (PAA-R) of varicella-zoster virus (VZV) selected in the presence of PAA were examined. The DNA polymerase activity of PAA-R was inhibited less than that of the parent strain by PAA in vitro. PAA-R was resistant to acyclovir and also to both ara-A and ara-C. The susceptibilities to ara-A and ara-C of four acyclovir resistant mutants selected in the presence of acyclovir, and also resistant to PAA, were examined. Two variants were resistant, one was slightly resistant, and one was sensitive to both drugs. These cross-resistances and susceptibilities of VZV variants to PAA, ACV, ara-A and ara-C should be considered in chemotherapy of VZV infections.  相似文献   

9.
Mechanism of antiviral activity of 1-β-d -arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) against the YSR strain of varicella-zoster virus (VZV), which is a mutant derived from the wild YS strain and is completely deficient in viral thymidine kinase (TK), was searched in comparison with antiviral activity of other thymidine analogues, guanosine analogue and thymidylate synthase (TS) inhibitor in human embryo lung fibroblast cells. Thymidine analogues, such as BV-araU, 5-iododeoxyuridine (IUDR), 1-β-d -arabinofuranosylthymine (araT), and guanosine analogue, such as 9-(2-hydroxyethoxymethyl)guanine (ACV), showed higher antiviral activity to the YS strain than to the YSR strain. Though, BV-araU also had the antiviral activity of a microgram level against the YSR strain. In contrast to these results, TS inhibitor, 5-fluorodeoxyuridine (FUDR), had higher antiviral activity to the YSR strain than to the YS strain. Highly synergistic antiviral activities of FUDR to the YS strain and the YSR strain were observed in combination with IUDR, araT, or ACV. However, weakly synergistic or additive inhibition to the YSR strain was shown in combination of BV-araU and FUDR, in spite of highly synergistic effect of this combination to the YS strain. The viral and cellular TS activity was partially inhibited by BV-araU monophosphate, but not by BV-araU. These results indicate that BV-araU is converted into BV-araU monophosphate by cellular TK, and the inhibition of TS activity by BV-araU monophosphate in the YSR strain-infected cells results in the suppression of viral replication.  相似文献   

10.
11.
The activity of mononuclear cells to inhibit plaque formation of varicella-zoster virus (VZV) was investigated by an in vitro infectious center assay. Peripheral blood mononuclear cells (PBMC) inhibited VZV plaque formation by co-cultivation with VZV-infected fibroblasts. As compared to mononuclear cells from normal individuals, mononuclear cells from umbilical cord blood and from patients receiving corticosteroids showed a significant decrease in the ability to inhibit viral replication. This ability was significantly increased for mononuclear cells collected during the acute phase of varicella. PBMC obtained from patients in the acute phase of varicella produced significantly higher amounts of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-12 in the supernatant compared with those of healthy individuals. These data suggest that the cytokines have an important role in the inhibition of the spread of VZV at an early stage of varicella. Th1 type adaptive immunity might play a major role in VZV infection.  相似文献   

12.
The toxic and mutagenic activities of five antiherpesvirus agents to HeLa cells and herpes simplex virus type 1 (HSV-1) were investigated. 5-Iodo-2'-deoxyuridine (IDU) and 9-beta-D-arabinofuranosyl-adenine (araA) showed very potent inhibitory effects on cell growth and the cloning efficiency of HeLa cells, whereas 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU), E-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) and 9-(2-hydroxyethoxymethyl)guanine (ACV) showed less inhibitory effect. 50% inhibitory doses of BV-araU and BVDU for cell growth were 657 and 253 micrograms/ml, respectively. Although the growth inhibitory activity of BVDU was very weak, as above, the mutagenic activity of this drug to the cells, estimated by induction of colchicine-resistant mutants, was observed to be 4 micrograms/ml, which was a markedly smaller dose than the inhibitory dose for cell growth, and the highest frequency of mutation of the cells was shown at 100 micrograms/ml of BVDU. This activity was more potent than that of IDU. No mutagenic activity of BV-araU, araA and ACV to cells was observed within the concentration range of 1-800 micrograms/ml. IDU showed high mutagenic activity to HSV-1 growing in human embryo lung fibroblasts, and IDU-resistant mutants were induced at a high frequency. BVDU also induced a small amount of BVDU-resistant mutant virus, although this drug induced many mutant cells. No mutagenic activity of BV-araU, araA and ACV to HSV-1 was observed.  相似文献   

13.
14.
Jones JO  Arvin AM 《Journal of virology》2006,80(11):5113-5124
Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Using human cellular DNA microarrays, we found that many nuclear factor kappa B (NF-kappaB)-responsive genes were down-regulated in VZV-infected fibroblasts, suggesting that VZV infection inhibited the NF-kappaB pathway. The activation of this pathway causes a cellular antiviral response, including the production of alpha/beta interferon, cytokines, and other proteins that restrict viral infection. In these experiments, we demonstrated that VZV interferes with NF-kappaB activation in cultured fibroblasts and in differentiated epidermal cells in skin xenografts of SCIDhu mice infected in vivo. VZV infection of fibroblasts caused a transient nuclear translocation of p50 and p65, the canonical NF-kappaB family members. In a process that was dependent upon the presence of infectious VZV, these proteins rapidly became sequestered in the cytoplasm of VZV-infected cells. Exclusion of NF-kappaB proteins from nuclei was associated with the continued presence of IkappaBalpha, which binds p50 and p65 and prevents their nuclear accumulation. IkappaBalpha levels did not diminish even though the protein became phosphorylated and ubiquitinated, as determined based on detection of the characteristic high-molecular-weight form of the protein, and the 26S proteasome remained functional in VZV-infected cells. VZV infection also inhibited the characteristic degradation of IkappaBalpha that is induced by exposure of fibroblasts to tumor necrosis factor alpha. As expected, herpes simplex virus 1 caused the persistent nuclear translocation of NF-kappaB proteins, which has been shown to facilitate its replication, whereas VZV infection progressed without persistent NF-kappaB nuclear localization. We suggest that VZV has evolved a mechanism to limit host cell antiviral defenses by sequestering NF-kappaB proteins in the cytoplasm, a strategy that appears to be unique among the herpesviruses.  相似文献   

15.
Simian varicella virus (SVV) and human varicella-zoster virus (VZV) are closely related viruses that share many structural and functional properties. 5-Substituted 2'-deoxyuridine derivatives (e.g., BVDU, BVaraU) and acyclic guanine nucleoside derivatives (i.e., ACV and GCV) show comparable antiviral efficacy against VZV and SVV in cell culture. In contrast, the novel bicyclic nucleoside analogues (BCNAs) are exquisitely inhibitory to VZV (EC50 in the lower nanomolar range) but completely inactive against SVV. The VZV-encoded thymidine kinase (TK) appeared to be essential for BCNA activation (phosphorylation) and anti-VZV activity. Also SVV TK is able to recognize the BCNAs as substrate, although with a different structure-affinity relationship. Thus, viral TK-catalyzed phosphorylation is necessary but not sufficient for the BCNAs to display antiviral activity. Our data suggest that the eventual target of the BCNAs against VZV is either absent in SVV or, alternatively, is insensitive for the (phosphorylated) BCNAs.  相似文献   

16.
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells.  相似文献   

17.
Mutants of Varicella-Zoster Virus (VZV) which are resistant to phosphonoacetic acid (PAA), bromodeoxyuridine (BuDR), and acyclovir (ACV) were obtained by serial passages of VZV with increasing concentrations of these drugs. A PAA-resistant mutant and a BuDR-resistant mutant were found also to be resistant to ACV. Five of 8 ACV-resistant mutants acquired resistance to PAA, but none acquired resistance to BuDR. The BuDR-resistant mutant did not induce viral thymidine kinase (TK) activity, but all the ACV-resistant mutants selected in ACV showed viral TK activity which was suppressed with anti-VZV serum and had almost the same electrophoretic mobility as that of the parent strain on polyacrylamide gel electrophoresis in non-denaturing conditions. However, in competitive TK assay with ACV, 2 of 8 ACV-resistant mutants showed no change of phosphorylation of radioactive thymidine, while the other 6 showed decreased phosphorylation of radioactive thymidine. It was suggested that TK induced by the former 2 ACV-resistant mutants had lost affinity to ACV, and so the mutants could grow in the presence of ACV. Thus of the 8 ACV-resistant mutants selected in ACV, 2 were sensitive to PAA with altered TK activity, 5 were resistant to PAA with unaltered TK activity, and 1 was sensitive to PAA with unaltered TK activity, and may have altered DNA polymerase activity to ACV, retaining sensitivity to PAA. These results suggest that resistance of VZV to ACV results from alterations in the virus-specified TK or DNA polymerase, as demonstrated in HSV resistant to ACV.  相似文献   

18.
19.
Epstein-Barr virus-transformed human B cells expressed cell surface varicella-zoster virus (VZV) antigens after superinfection with VZV although they did not form infectious centers in a plaque assay. The VZV-superinfected cells were lysed by autologous VZV-stimulated T-cell lines and their derivative clones. The effector cells were specific for VZV and an HLA DR antigen and were T4+. The specificity of lysis of Epstein-Barr virus-transformed, VZV-superinfected targets by prestimulated mononuclear cells in this system contrasted with the unrestricted lysis seen when the targets were VZV-infected fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号