首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

2.
A major bottleneck in the field of biochemistry is our limited understanding of the processes by which a protein folds into its native conformation. Much of the work on this issue has focused on the conserved core of the folded protein. However, one might imagine that a ubiquitous motif for unaided folding or for the recognition of chaperones may involve regions on the surface of the native structure. We explore this possibility by an analysis of the spatial distribution of regions with amphiphilic α-helical potential on the surface of β-sheet proteins. All proteins, Including β-sheet proteins, contain regions with amphiphilic α-helical potential. That is, any α-helix formed by that region would be amphiphilic, having both hydrophobic and hydrophilic surfaces. In the three-dimensional structure of all β-sheet proteins analyzed, we have found a distinct pattern in the spatial distribution of sequences with amphiphilic α-helical potential. The amphiphilic regions occur in ring shaped clusters approximately 20 to 30 Å in diameter on the surface of the protein. In addition, these regions have a strong preference for positively charged amino acids and a lower preference for residues not favorable to α-helix formation. Although the purpose of these amphiphilic regions which are not associated with naturally occurring α-helix is unknown, they may play a critical role in highly conserved processes such as protein folding. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The secondary structure of DnaA protein and its interaction with DNA and ribonucleotides has been predicted using biochemical, biophysical techniques, and prediction methods based on multiple-sequence alignment and neural networks. The core of all proteins from the DnaA family consists of an “open twisted α/β structure,” containing five α-helices alternating with five β-strands. In our proposed structural model the interior of the core is formed by a parallel β-sheet, whereas the α-helices are arranged on the surface of the core. The ATP-binding motif is located within the core, in a loop region following the first β-strand. The N-terminal domain (80 aa) is composed of two α-helices, the first of which contains a potential leucine zipper motif for mediating protein-protein interaction, followed by a β-strand and an additional α-helix. The N-terminal domain and the α/β core region of DnaA are connected by a variable loop (45–70 aa); major parts of the loop region can be deleted without loss of protein activity. The C-terminal DNA-binding domain (94 aa) is mostly α-helical and contains a potential helix-loop-helix motif. DnaA protein does not dimerize in solution; instead, the two longest C-terminal α-helices could interact with each other, forming an internal “coiled coil” and exposing highly basic residues of a small loop region on the surface, probably responsible for DNA backbone contacts. © 1997 Wiley-Liss Inc.  相似文献   

4.
The study of complementary protein fragments is thought to be generally useful to identify early folding intermediates. A prerequisite for these studies is the reconstitution of the native-like structure by fragment complementation. Structural analysis of the complementation of the domain-sized proteolytic fragments of E. coli thioredoxin, using a combination of H-exchange and 2D NMR experiments as a fingerprint technique, provide evidence for the extensive reconstitution of a native β-sheet, with local conformational adjustments near the cleavage site. Remarkably, the antiparallel β-strand between the fragments shows a native-like protection of the amide protons to solvent exchange. Our results indicate that these fragments can be useful to study the early events in the still little understood formation of β-sheets. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The solid state secondary structure of myoglobin, RNase A, concanavalin A (Con A), poly(L -lysine), and two linear heterooligomeric peptides were examined by both far-uv CD spectroscopy1 and by ir spectroscopy. The proteins associated from water solution on glass and mica surfaces into noncrystalline, amorphous films, as judged by transmission electron microscopy of carbon-platinum replicas of surface and cross-fractured layer. The association into the solid state induced insignificant changes in the amide CD spectra of all α-helical myoglobin, decreased the molar ellipticity of the α/β RNase A, and increased the molar ellipticity of all-β Con A with no change in the positions of the bands' maxima. High-temperature exposure of the films induced permanent changes in the conformation of all proteins, resulting in less α-helix and more β-sheet structure. The results suggest that the protein α-helices are less stable in films and that the secondary structure may rearrange into β-sheets at high temperature. Two heterooligomeric peptides and poly (L -lysine), all in solution at neutral pH with “random coil” conformation, formed films with variable degrees of their secondary structure in β-sheets or β-turns. The result corresponded to the protein-derived Chou-Fasman amino acid propensities, and depended on both temperature and solvent used. The ir and CD spectra correlations of the peptides in the solid state indicate that the CD spectrum of a “random” structure in films differs from random coil in solution. Formic acid treatment transformed the secondary structure of the protein and peptide films into a stable α-helix or β-sheet conformations. The results indicate that the proteins aggregate into a noncrystalline, glass-like state with preserved secondary structure. The solid state secondary structure may undergo further irreversible transformations induced by heat or solvent. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The packing of α-helices and β-sheets in six αβ proteins (e.g. flavodoxin) has been analysed. The results provide the basis for a computer algorithm to predict the tertiary structure of an αβ protein from its amino acid sequence and actual assignment of secondary structure.The packing of an individual α-helix against a β-sheet generally involves two adjacent ± 4 rows of non-polar residues on the α-helix at the positions i, i + 4, i + 8, i + 1, i + 5, i + 9. The pattern of interacting β-sheet residues results from the twisted nature of the sheet surface and the attendant rotation of the side-chains. At a more detailed level, four of the α-helical residues (i + 1, i + 4, i + 5 and i + 8) form a diamond that surrounds one particular β-sheet residue, generally isoleucine, leucine or valine. In general, the α-helix sits 10 Å above the sheet and lies parallel to the strand direction.The prediction follows a combinational approach. First, a list of possible β-sheet structures (106 to 1014) is constructed by the generation of all β-sheet topologies and β-strand alignments. This list is reduced by constraints on topology and the location of non-polar residues to mediate the sheet/helix packing, and then rank-ordered on the extent of hydrogen bonding. This algorithm was uniformly applied to 16 αβ domains in 13 proteins. For every structure, one member of the reduced list was close to the crystal structure; the root-mean-square deviation between equivalenced Cα atoms averaged 5.6 Å for 100 residues. For the αβ proteins with pure parallel β-sheets, the total number of structures comparable to or better than the native in terms of hydrogen bonds was between 1 and 148. For proteins with mixed β-sheets, the worst case is glyceraldehyde-3-phosphate dehydrogenase, where as many as 3800 structures would have to be sampled. The evolutionary significance of these results as well as the potential use of a combinatorial approach to the protein folding problem are discussed.  相似文献   

7.
Physarum polycephalum hemagglutinin I (HA1) is a 104-residue protein that is secreted to extracellular space. The crystal structure of HA1 has a β-sandwich fold found among lectin structures, such as legume lectins and galectins. Interestingly, the β-sandwich of HA1 lacks a jelly roll motif and is essentially composed of two simple up-and-down β-sheets. This up-and-down β-sheet motif is well conserved in other legume lectin-like proteins derived from animals, plants, bacteria, and viruses. It is more noteworthy that the up-and-down β-sheet motif includes many residues that make contact with the target carbohydrates. Our NMR data demonstrate that HA1 lacking a jelly roll motif also binds to its target glycopeptide. Taken together, these data show that the up-and-down β-sheet motif provides a fundamental scaffold for the binding of legume lectin-like proteins to the target carbohydrates, and the structure of HA1 suggests a minimal carbohydrate recognition domain.  相似文献   

8.
A folding topology for the homodimeric N-terminal domain (IIA, 2 × 14 kDa) of the hydrophilic subunit (IIABman) of the mannose transporter of E. coli is proposed. The prediction is based on (i) tertiary structure prediction methods, and (ii) functional properties of site-directed mutants in correlation with NMR-derived α/β secondary structure data. The 3D structure profile suggested that the overall fold of IIA is similar to that of the unrelated protein, flavodoxin, which is an open-stranded parallel β-sheet with a strand order of 5 4 3 1 2. The 3D model of IIA, constructed using the known atomic structure of flavodoxin, is consistent with the results from site-directed mutagenesis. Recently NMR results confirmed the open parallel β-sheet with a strand order of 4 3 12 (residues 1-120) of our model whereas β-strand 5 (residues 127–130) was shown to be antiparallel to β-strand 4. The correctly predicted fold includes 90% of the monomeric subunit sequence and contains all functional sites of the IIA domain.  相似文献   

9.
Cross-strand pair correlations are calculated for residue pairs in antiparallel β-sheet for two cases: pairs whose backbone atoms are hydrogen bonded together (H-bonded site) and pairs which are not (non-H-bonded site). The statistics show that this distinction is important. When glycine is located on the edge of a sheet, it shows a 3:1 preference for the H-bonded site. Thestrongest observed correlations are for pairs of disulfide-bonded cystines, many of which adopt a close-packed conformation with each cystine in a spiral conformation of opposite chirality to its partner. It is likely that these pairs are a signature for the family of small, cystine-rich proteins. Most other strong positive and negative correlations involve charged and polar residues. It appears that electrostatic compatibility is the strongest factor affecting pair correlation. Significant correlations are observed for β- and γ-branched residues inthe non-H-bonded site. An examination of the structures showsa directionality in side chain packing. There is a correlation between (1) the directionality in the packing interactions of non-H-bonded β- and γ-branched residue pairs, (2) the handedness of the observed enantiomers of chiral β-branched side chains, and (3) the handedness of the twist of β-sheet. These findings have implications for the formation of β-sheets during protein folding and the mechanism by which the sheet becomes twisted. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

11.
A new approach for evaluating the secondary structure of proteins by CD spectroscopy of overlapping peptide segments is applied to porcine adenylate kinase (AK1) and yeast guanylate kinase (GK3). One hundred seventy-six peptide segments of a length of 15 residues, overlapping by 13 residues and covering the complete sequences of AK1 and GK3, were synthesized in order to evaluate their secondary structure composition by CD spectroscopy. The peptides were prepared by solid phase multiple peptide synthesis method using the 9-fluorenylmethoxycarbonyl/tert-butyl strategy. The individual peptide secondary structures were studied with CD spectroscopy in a mixture of 30% trifluoroethanol in phosphate buffer (pH 7) and subsequently compared with x-ray data of AK1 and GK3. Peptide segments that cover α-helical regions of the AK1 or GK3 sequence mainly showed CD spectra with increasing and decreasing Cotton effects that were typical for appearing and disappearing α-helical structures. For segments with dominating β-sheet conformation, however, the application of this method is limited due to the stability and clustering of β-sheet segments in solution and due to the difficult interpretation of random-coiled superimposed β-sheet CD signals. Nevertheless, the results of this method especially for α-helical segments are very impressive. All α-helical and 71% of the β-sheet containing regions of the AK1 and GK3 could be identified. Moreover, it was shown that CD spectra of consecutive peptide content reveal the appearance and disappearance of α-helical secondary structure elements and help localizing them on the sequence string. © 1997 John Wiley & Sons, Inc. Biopoly 41: 213–231, 1997  相似文献   

12.
An empirical relation between the amino acid composition and three-dimensional folding pattern of several classes of proteins has been determined. Computer simulated neural networks have been used to assign proteins to one of the following classes based on their amino acid composition and size: (1) 4α-helical bundles, (2) parallel (α/β)8 barrels, (3) nucleotide binding fold, (4) immunoglobulin fold, or (5) none of these. Networks trained on the known crystal structures as well as sequences of closely related proteins are shown to correctly predict folding classes of proteins not represented in the training set with an average accuracy of 87%. Other folding motifs can easily be added to the prediction scheme once larger databases become available. Analysis of the neural network weights reveals that amino acids favoring prediction of a folding class are usually over represented in that class and amino acids with unfavorable weights are underrepresented in composition. The neural networks utilize combinations of these multiple small variations in amino acid composition in order to make a prediction. The favorably weighted amino acids in a given class also form the most intramolecular interactions with other residues in proteins of that class. A detailed examination of the contacts of these amino acids reveals some general patterns that may help stabilize each folding class. © 1993 Wiley-Liss, Inc.  相似文献   

13.
E A Kabat  T T Wu 《Biopolymers》1973,12(4):751-774
The influence of nearest-neighbor pairs of amino acids (n ? 1) and (n + 1) on the conformation of amino acid (n) in proteins has been studied. From experimental data on eleven proteins of known three dimensional structures, our definition of an α-helical domain in the Φ,Ψ plot has been reexamined and found to be satisfactory. On the same principle, a regular β-sheet domain has been delineated. We then revised our 20 × 20 table of frequencies of occurrences of various conformations tabulating three values: α-helical, β-sheet, and neither. These frequencies were then used to locate the helixbreaking positions in cytochrome b5, papain, thermolysin, and calcium-binding protein. In conjuction with the helical wheel method, they were useful for predicting the locations of most α-helical segments. Similarly the β-sheet breaking positions in papain were located and most of the β-sheets found by X-ray diffraction were close to or between these positions. Data on β-sheets are extremely sparse so that extensive tests were not possible. The application of this method to abnormal hemoglobins suggested possible distortions of helices and in several instances correlated with abnormal properties of the hemoglobins and association with disease. The variable region of human immunoglobin heavy chains was found to have a very low α-helical content though β-sheet structures might exist.  相似文献   

14.
2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5–60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.  相似文献   

15.
The folding mechanism of cellular retinoic acid binding protein I (CRABP I), cellular retinol binding protein II (CRBP II), and intestinal fatty acid binding protein (IFABP) were investigated to determine if proteins with similar native structures have similar folding mechanisms. These mostly β-sheet proteins have very similar structures, despite having as little as 33% sequence similarity. The reversible urea denaturation of these proteins was characterized at equilibrium by circular dichroism and fluorescence. The data were best fit by a two-state model for each of these proteins, suggesting that no significant population of folding intermediates were present at equilibrium. The native states were of similar stability with free energies (linearly extrapolated to 0 M urea, ΔG) of 6.5, 8.3, and 5.5 kcal/mole for CRABP I, CRBP II, and IFABP, respectively. The kinetics of the folding and unfolding processes for these proteins was monitored by stopped-flow CD and fluorescence. Intermediates were observed during both the folding and unfolding of all of these proteins. However, the overall rates of folding and unfolding differed by nearly three orders of magnitude. Further, the spectroscopic properties of the intermediate states were different for each protein, suggesting that different amounts of secondary and/or tertiary structure were associated with each intermediate state for each protein. These data show that the folding path for proteins in the same structural family can be quite different, and provide evidence for different folding landscapes for these sequences. Proteins 33:107–118, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

17.
Conformational transitions of calmodulin as studied by vacuum-uv CD   总被引:1,自引:0,他引:1  
CD measurements were made for calmodulin and its calcium (Ca2+) complexes at different ionic strengths and Ca2+ concentrations. Calmodulin at an ionic strength of 0.00M and in the absence of Ca2+ exists as an α-helical protein with a negligible amount of β-sheet. An increase in ionic strength, whether or not Ca2+ is present, increases α-helix at the expense of “other” (coil) structure. The changes in β-sheet and β-turns are insignificant. Binding of Ca2+ at low ionic strength occurs in stages with at least one folding intermediate before attaining the final stable state. Binding of Ca2+ at an ionic strength of 0.165M causes only a slight increase in α-helix, so that the secondary structure of the protein depends on ionic strength and is insensitive to the nature of the cation (i.e., Ca2+). Thus, the activation of calmodulin by Ca2+ must be due to a structural reorientation rather than to a major secondary structural alteration. The CD estimation of secondary structure with 4 mol Ca2+/calmodulin (61% α-helix, 2% antiparallel β-sheet, 2% parallel β-sheet, 21% β-turns, and 14% other) is in excellent agreement with the x-ray results.  相似文献   

18.
Donald T. Downing 《Proteins》1995,23(2):204-217
Mammalian epidermal keratin molecules adopt rod-shaped conformations that aggregate to form cytoplasmic intermediate filaments. To investigate these keratin conformations and the basis for their patterns of molecular association, graphical methods were developed to relate known amino acid sequences to probable spacial configurations. The results support the predominantly α-helical conformation of keratin chains, interrupted by short non-α-helical linkages. However, it was found that many of the linkages have amino acid sequences typical of β-strand conformations. Space-filling atomic models revealed that the β-strand sequences would permit the formation of 2-chain and 4-chain cylindrical β-helices, fully shielding the hydrophobic amino acid chains that alternate with hydrophilic residues in these sequences. Because of the locations of the β-helical regions in human and mouse stratum corneum keratin chains, only homodimers of the keratins could interact efficiently to form 2-chain and 4-chain β-helices. Tetramers having the directions and degrees of overlap of constituent dimers that have been identified by previous investigators are also predicted from the interactions of β-helical motifs. Heterotetramers formed from dissimilar homodimers could combine, through additional β-helical structures, to form higher oligomers having the dimensions seen in electron microscopic studies. Previous results from chemical crosslinking studies can be interpreted to support the concept of homodimers rather than heterodimers as the basis for keratin filament assembly. © 1995 Wiley-Liss, Inc.  相似文献   

19.
The three-dimensional structure of pectate lyase E (PelE) has been determined by crystallographic techniques at a resolution of 2.2 A. The model includes all 355 amino acids but no solvent, and refines to a crystallographic refinement factor of 20.6%. The polypeptide backbone folds into a large right-handed cylinder, termed a parallel [beta] helix. Loops of various sizes and conformations protrude from the central helix and probably confer function. A putative Ca2+-binding site as well as two cationic sites have been deduced from the location of heavy atom derivatives. Comparison of the PelE and recently determined pectate lyase C (PelC) structures has led to identification of a putative polygalacturonate-binding region in PelE. Structural differences relevant to differences in the enzymatic mechanism and maceration properties of PelE and PelC have been identified. The comparative analysis also reveals a large degree of structural conservation of surface loops in one region as well as an apparent aromatic specificity pocket in the amino-terminal branch. Also discussed is the sequence and possible functional relationship of the pectate lyases with pollen and style plant proteins.  相似文献   

20.
Anionic phosphatidic acid (PA) has been shown to stabilize and bind stronger than phosphatidylglycerol via electrostatic and hydrogen bond interaction with the positively charged residues of potassium channel KcsA. However, the effects of these lipids on KcsA folding or secondary structure are not clear. In this study, the secondary structure analyses of KcsA potassium channel was carried out using circular dichroism spectroscopy. It was found that PA interaction leads to increases in α-helical and β-sheet content of KcsA protein. In PA, KcsA α-helical structure was further stabilized by classical membrane-active cosolvent trifluoroethanol followed by reduction in the β-sheet content indicating cooperative transformation from the β-sheet to an α-helical structure. The data further uncover the role of anionic PA in KcsA folding and provide mechanism by which strong hydrogen bonds/electrostatic interaction among PA headgroup and basic residues on lipid binding domains may induce high helical structure thereby altering the protein folding and increasing the stability of tetrameric assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号