首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it has been assumed that the microfibrils in hard -keratin are members of the class of structures known as intermediate filaments (IF), no firm chemical evidence relating the low-sulfur proteins in hard -keratin to other IF proteins has yet been published. We now present primary sequence data for two components from wool keratin which show striking similarities with two IF proteins, desmin and vimentin. The sequences show marked homology, a heptad repeat and a 9.5-residue periodicity in the linear disposition of the acidic and the basic residues. These data thus provide the first evidence that the low-sulfur proteins in hard -keratin and the other IF proteins do indeed have both a similar structure and a common evolutionary origin.  相似文献   

2.
Recent amino acid sequence data have revealed that the microfibrils in hard α-keratin contain proteins with highly significant homologies and closely similar structural characteristics to the intermediate filament (IF) proteins known as desmin and vimentin. This result implies that microfibrils in hard α-keratin may be classified as a member of the IF and that the major features of these various filamentous structures are the same. Consequently, data obtained using X-ray diffraction, electron microscopy, amino acid sequence structural analysis and physicochemical techniques have been collated from the hitherto diverse fields of keratin and IF structure and used to formulate a more detailed model for the 7–8 nm diameter filaments than has previously been possible. Two models consisting of four-chain units arranged with the helical symmetry deduced for hard α-keratin1 (Fraser et al. J. Mol. Biol. 1976, 108, 435–452) are in accord with the data. The structural unit comprises an oppositely directed pair of molecules each consisting of a two-stranded parallel-chain coiled-coil rope of length ~45 nm stabilized by both interchain and intermolecular ionic interactions. For a perfectly regular structure the filament may be likened either to a seven-stranded cable with a supercoil pitch length of about 345 nm (pitch angle ~2.9°), or a ten-stranded cable (Fraser, R. D. B. and MacRae, T. P. Polymer 1973, 14, 61–67) with a supercoil pitch length of about 1293 nm (pitch angle ~0.8°). The models also provide some insight into the self-assembly mechanism of the IF.  相似文献   

3.
To explore the relationship between abnormal keratin molecules, 10-nm intermediate filament (IF) organization, and epidermal fragility and blistering, we sought to determine the functional consequences of homozygosity for a dominant keratin defect. We describe a family with an autosomal dominant skin-blistering disorder, epidermolysis bullosa simplex, Koebner subtype (EBS-K), that has a novel point mutation, occurring in the keratin 5 gene (KRT5), that predicts the substitution of an evolutionarily conserved lysine by an asparagine residue (K173N). Unlike previous heterozygous mutations located within the initial segment of domain 1A of keratin molecules, K173N heterozygosity did not result in severe disease or clumping of keratin filaments. One family member was found to be homozygous for the K173N allele, having inherited it from each of her affected first-cousin parents. Despite a lack of normal keratin 5 molecules, and an effective doubling of abnormal molecules, available for heterodimerization with keratin 14 during IF formation, there were no significant differences in the clinical severity or the ultrastructural organization of the keratin IF cytoskeleton of the homozygous individual. These data demonstrate that the K173N mutation behaves as a fully dominant allele and indicate that a limited number of abnormal keratin molecules are sufficient to impair cytoskeletal function and elicit epidermal fragility and blistering.  相似文献   

4.
Many alpha-helical proteins that form two-chain coiled coils possess a 13-residue trigger motif that seems to be required for the stability of the coiled coil. However, as currently defined, the motif is absent from intermediate filament (IF) protein chains, which nevertheless form segmented two-chain coiled coils. In the present work, we have searched for and identified two regions in IF chains that are essential for the stability necessary for the formation of coiled-coil molecules and thus may function as trigger motifs. We made a series of point substitutions with the keratin 5/keratin 14 IF system. Combinations of the wild-type and mutant chains were assembled in vitro and in vivo, and the stabilities of two-chain (one-molecule) and two-molecule assemblies were examined with use of a urea disassembly assay. Our new data document that there is a region located between residues 100 and 113 of the 2B rod domain segment that is absolutely required for molecular stability and IF assembly. This potential trigger motif differs slightly from the consensus in having an Asp residue at position 4 (instead of a Glu) and a Thr residue at position 9 (instead of a charged residue), but there is an absolute requirement for a Glu residue at position 6. Because these 13 residues are highly conserved, it seems possible that this motif functions in all IF chains. Likewise, by testing keratin IF with substitutions in both chains, we identified a second potential trigger motif between residues 79 and 91 of the 1B rod domain segment, which may also be conserved in all IF chains. However, we were unable to find a trigger motif in the 1A rod domain segment. In addition, many other point substitutions had little detectable effect on IF assembly, except for the conserved Lys-23 residue of the 2B rod domain segment. Cross-linking and modeling studies revealed that Lys-23 may lie very close to Glu-106 when two molecules are aligned in the A(22) mode. Thus, the Glu-106 residue may have a dual role in IF structure: it may participate in trigger formation to afford special stability to the two-chain coiled-coil molecule, and it may participate in stabilization of the two-molecule hierarchical stage of IF structure.  相似文献   

5.
E G Bendit 《Biopolymers》1966,4(5):539-559
A number of basic features of the infrared spectrum of keratin have been confirmed and some new features have been found. In the 3-μ region, the amide A frequency of helical material in α-keratin at 3286 cm.?1 is close to the expected value, but that of the crystalline phase in α-keratin, near 3270 cm.?1, is lower than had previously been reported. The noncrystalline phase absorbs in the vicinity of 3300 cm.?1 or above, and this causes the low-intensity component of the amide A band in both α- and β-keratin to occur at higher frequencies than those of the high-intensity component. In the 6-μ region, the amide II frequency of noncrystalline material is below 1525 cm.?1. Keratin denatured in lithium bromide, after washing out the reagent, appears to have a considerable helix content, possibly as much as that of the original protein. Hydration causes significant spectral changes. In the 6-mu; region, the frequency of the amide I band of crystalline material is lowered, while that of the amide II band is increased, both by a few wavenumbers; the amide II frequency of noncrystaline material is also increased by a few wavenumbers. In the 3-μ region, no significant change is observed in the amide A frequency of crystalline material, while the frequency of the noncrystaline material is reduced. These spectral changes are interpreted in terms of a weak association of water with main-chain carbonyl groups in the crystalline phase, while in the noncrystaline phase it is thought likely that water molecules form hydrogen-bond bridges between polypetide chains. The absorption coefficient of the amide A band and the integrated absorption intensities of the amide A, I, and II bands do not vary appreciably in the three forms of keratin investigated.  相似文献   

6.
Amino acid sequence studies of helical particles derived from proteolytic digests of mouse epidermal keratin intermediate filaments (IF) have shown that their coiled-coil molecules are heterodimers of Type I and Type II keratins, with a parallel arrangement of the two chains. From a reappraisal of published chemical cross-linking data, it is concluded that the coiled-coil molecules in all IF consist of pairs of parallel chains in precise axial register.  相似文献   

7.
Both analyses of x-ray diffraction patterns of well oriented specimens of trichocyte keratin intermediate filaments (IF) and in vitro cross-linking experiments on several types of IF have documented that there are three modes of alignment of pairs of antiparallel molecules in all IF: A11, A22 and A12, based on which parts of the major rod domain segments are overlapped. Here we have examined which residues may be important for stabilizing the A11 mode. Using the K5/K14 system, we have made point mutations of charged residues along the chains and examined the propensities of equimolar mixtures of wild type and mutant chains to reassemble using as criteria: the formation (or not) of IF in vitro or in vivo; and stabilities of one- and two-molecule assemblies. We identified that the conserved residue Arg10 of the 1A rod domain, and the conserved residues Glu4 and Glu6 of the linker L2, were essential for stability. Additionally, conserved residues Lys31 of 1A and Asp1 of 2A and non-conserved residues Asp/Asn9 of 1A, Asp/Asn3 of 2A, and Asp7 of L2 are important for stability. Notably, these groups of residues lie close to each other when two antiparallel molecules are aligned in the A11 mode, and are located toward the ends of the overlap region. Although other sets of residues might theoretically also contribute, we conclude that these residues in particular engage in favorable intermolecular ionic and/or H-bonding interactions and thereby may play a role in stabilizing the A11 mode of alignment in keratin IF.  相似文献   

8.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   

9.
E G Bendit 《Biopolymers》1966,4(5):561-577
A number of new bands have been found in the spectra of deuterated α- and β-keratin. In particular, the deuteration difference spectrum has been useful for the determination of frequencies of previously unsuspected bands. Thus it is found that the amide A and II frequencies of the nonhelical component in α-keratin occur at 3310–3320 and 1520 cm.?1, respectively, and that both bands exhibit dichroism consistent with polypeptide chains which have a measure of alignment parallel to the fiber axis. The parallel dichroism of the amide II′ band of this phase at about 1435 cm.?l also indicates some alignment. A nondichroic residual band at 1513 cm.?1 in highly deuterated α-keratin is assigned to the tyrosine residue, as a sharp band near this frequency is found in the spectrum of polytyrosine. The ν‖(o) component of the α-helix is weak or absent in α-keratin, and the relatively sharp band observed near this frequency is thought to be due to the tyrosine residue, while its dichroism is caused by the presence of dichroic nonhelical material. A band near 1575 cm.?1 in deuterated α- and β-keratin is tentatively assigned to the deuterated guanidinium group of arginine. This band becomes progressively more prominent during deuteration, which indicates that some arginine side chains arc slow to exchange, possibly because their environment prevents interaction with D2O. The deuteration difference spectrum also shows that, contrary to earlier views, helical material in α-keratin exchanges significantly during the early stages of deuteration, although at a slower rate than the nonhelical material, while part of the nonhelical phase does not exchange as rapidly as had been thought and makes a contribution even after many hours or days.  相似文献   

10.
Recently, the spatial distribution of the crosslinks induced between lysine residues in trichocyte (alpha-) keratin intermediate filaments (IF) using disulfosuccinimidyl tartrate was analyzed in detail and the results used to provide information about the three-dimensional structure of the IF [Fraser, R.D.B., Parry, D.A.D., 2005. The three-dimensional structure of trichocyte (hard alpha-) keratin intermediate filaments: features of the molecular packing deduced from the sites of induced crosslinks. J. Struct. Biol. 151, 171-181.] The presence of small amounts of 0--> +/-4 crosslinkages between molecular strands four distant in the network implied that the three-dimensional network of interacting molecules must be deeply puckered, but no specific suggestions were made about the nature of the puckering. Whilst it was recognized that there may be more than one type of molecular environment in the structural repeat the initial analysis was confined to the simplest case in which all molecules had the same environment, that is to say the asymmetric unit comprised a single molecule. Further studies reported here suggest that it is likely that the asymmetric unit consists of at least two and possibly as many as four molecules and the implications of this for modeling the structure of trichocyte IF are discussed.  相似文献   

11.
Molecules of intermediate filament (IF) proteins contain a central rod domain in which the two constituent chains have a predominantly α-helical conformation and are coiled around one another to form segments of two-strand rope. Possible interactions between the two long segments, termed 1B and 2 were investigated by a technique successfully employed in studies of the modes of association of collagen molecules by Miller and coworkers. Prominent maxima were found in all of the six possible modes of association between the rod domain segments in individual IF proteins and certain maxima were found to be common to all IF. The surface lattice of the IF from α-keratin has been determined and possible bonding arrangements between the rod-domain segments are catalogued. A systematic search was carried out for combinations of interaction maxima which were consistent with the dimensions of the surface lattice. By the further application of stereochemical constraints, models for the topological arrangement of the rod-domain segments on the surface lattice were derived and these are illustrated and discussed.  相似文献   

12.
Previous studies have shown that cytoplasmic intermediate filaments, other than the keratins, are each constructed from a single type of polypeptide chain. Studies involving chemical crosslinking between lysine groups have shown that assembly of the filaments begins with the formation of dimers in which the peptide chains are parallel and in exact register, and that these dimers further associate in antiparallel patterns having specific degrees of overlap. In the present study, molecular modeling of the conformations of vimentin molecules indicated that lysine side chains in identical positions in regions of α-helix in parallel chains might be unable to be linked because they are on opposite sides of the coiled coil hydrophobic core. Examination of published data on chemical crosslinking of lysines in vimentin confirmed that there were no instances of linkage within dimers between the nine pairs of identical lysines that lie more than one position within α-helical regions in parallel chains. Even among linkages that apparently were between dimers, only one of the 11 linkage products identified involved lysines that were both within an α-helical region. In 10 of the 11 identified linkages between dimers, one or both of the linked lysines were in regions of random coil conformation. These results of molecular modeling indicate that relative motion between polypeptide chains in oligomers of intermediate filament proteins is not sufficient to overcome an orientation of lysine groups that is unfavorable for their chemical linkage. This finding supports the interpretations of keratin cross-linking data indicating that parallel homodimers are the basis for keratin intermediate filament assembly. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
We analyzed the draft genome of the cephalochordate Branchiostoma floridae (B. floridae) for genes encoding intermediate filament (IF) proteins. From 26 identified IF genes 13 were not reported before. Four of the new IF genes belong to the previously established Branchiostoma IF group A, four to the Branchiostoma IF group B, one is homologous to the type II keratin E2 while the remaining four new IF sequences N1 to N4 could not be readily classified in any of the previously established Branchiostoma IF groups. All eleven identified A and B2-type IF genes are located on the same genomic scaffold and arose due to multiple cephalochordate-specific duplications. Another IF gene cluster, identified in the B. floridae genome, contains three keratins (E1, Y1, D1), two keratin-like IF genes (C2, X1), one new IF gene (N1) and one IF unrelated gene, but does not show any similarities to the well defined vertebrate type I or type II keratin gene clusters. In addition, some type III sequence features were documented in the new IF protein N2, which, however, seems to share a common ancestry with the Branchiostoma keratins D1 and two keratin-related genes C. Thus, a few type I and type II keratin genes existed in a common ancestor of cephalochordates and vertebrates, which after separation of these two lineages gave rise to the known complexities of the vertebrate cytoplasmic type I–IV IF proteins, as well as to the multiple keratin and related IF genes in cephalochordates, due to multiple gene duplications, deletions and sequence divergences.  相似文献   

15.
Although the hard α-keratins of wool are recognized as members of the intermediate filaments by sequence comparison thus for all attempts on reconstitution of wool α-keratin in filaments in vitro have failed. Here we show the oxidative sulphitolysis rather than the previously used S-carboxymethylation is the method of choice to prepare α-keratin derivatives suitable for assembly experiments. Once the protecting S-sulpho group is removed by 2-mercaptoethanol in vitro filaments formation can be induced. Electron micrographs show filaments with a diameter of 7–11 nm as in all other intermediate filaments. Thus, filament formation of α-keratins does not require the presence of matrix proteins.  相似文献   

16.

Background

Diversity of hair in marine mammals was suggested as an evolutionary innovation to adapt aquatic environment, yet its genetic basis remained poorly explored. We scanned α-keratin genes, one major structural components of hair, in 16 genomes of mammalian species, including seven cetaceans, two pinnipeds, polar bear, manatee and five terrestrial species.

Results

Extensive gene loss and high pseudogenization rate of α-keratin genes were identified in cetaceans when compared to terrestrial artiodactylans (average number of α-keratins 37.29 vs. 58.33; pseudogenization rate 29.89% vs. 8.00%), especially of hair follicle-specific keratin genes (average pseudogenization rate in cetaceans of 43.88% relative to 3.80% artiodactylian average). Compared to toothed whale, the much more number of intact functional α-keratin genes was examined in the baleen whale that had specific keratinized baleen. In contrast, the number of keratin genes in pinnipeds, polar bear and manatee were comparable to those of their respective terrestrial relatives. Additionally, four keratin genes (K39, K9, K42, and K74) were found to be pseudogenes or lost uniquely in cetaceans and manatees.

Conclusions

Species-specific evolution of α-keratin gene family identified in the marine mammals might be responsible for their different hair characteristics. Increased gene loss and pseudogenization rate identified in cetacean lineages was likely to contribute to hair-less phenotype to adaptation for complete aquatic environment. However, the fully aquatic manatee still remained the comparable number of intact genes to its terrestrial relative, probably due to its perioral bristles and bristle-like hairs on the oral disk. By contrast, similar evolution pattern of α-keratin gene repertoire in the pinnipeds, polar bear and their terrestrial relatives was likely due to abundant hair to keep warm when they went ashore. Interestingly, some keratin genes were exclusively lost in cetaceans and manatees, likely as a result of convergent hair-loss phenotype to inhabit completely aquatic environment in both groups.
  相似文献   

17.
18.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

19.
Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.  相似文献   

20.
Early electron microscope studies of developing wool and hair established that trichocyte (hard alpha-) keratin fibers have a composite structure in which filaments, subsequently shown to belong to the class of intermediate filaments (IF), were embedded in a matrix of sulfur-rich proteins. These studies also showed that the IF aggregate in a variety of ways to form what have been termed macrofibrils. Assembly into sheets appears to be an important initial factor in aggregation, and in the present contribution the structural principles governing sheet formation are formulated and specific models for the interaction between neighboring IF in a sheet are proposed, based on existing X-ray diffraction, electron microscope, and crosslinking data. All of the trichocyte keratins so far examined by electron microscopy exhibit similar filament/matrix textures and the mechanism of sheet formation proposed here is likely to have general applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号