首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extracellular nucleotides cause elevation of cytosolic free Ca2+ concentration ([Ca2+](i)) in osteoclasts, although the sources of Ca2+ are uncertain. Activation of P2Y receptors causes Ca2+ release from stores, whereas P2X receptors are ligand-gated channels that mediate Ca2+ influx in some cell types. To examine the sources of Ca2+, we studied osteoclasts from rat and rabbit using fura 2 fluorescence and patch clamp. Nucleotide-induced rise of ([Ca2+](i)) persisted on removal of extracellular Ca2+ (Ca), indicating involvement of stores. Inhibition of phospholipase C (PLC) with U-73122 or inhibition of endoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid or thapsigargin abolished the rise of ([Ca2+](i)). After store depletion in the absence of Ca, addition of Ca led to a rise of ([Ca2+](i)) consistent with store-operated Ca2+ influx. Store-operated Ca2+ influx was greater at negative potentials and was blocked by La(3+). In patch-clamp studies where PLC was blocked, ATP induced inward current indicating activation of P2X(4) nucleotide receptors, but with no rise of ([Ca2+](i)). We conclude that nucleotide-induced elevation of [Ca(2+)](i) in osteoclasts arises primarily through activation of P2Y nucleotide receptors, leading to release of Ca2+ from intracellular stores.  相似文献   

2.
It was previously shown that in rat thyroid PC-Cl3 cell line, a purinergic P2Y receptor increases the concentration of free cytosolic Ca(2+) ([Ca(2+)](i)) via phospholipase C activation. We here studied whether in a transformed cell line (PC-E1Araf) derived from parental PC-Cl3 cells, ATP is still able to transduce the [Ca(2+)](i)-based intracellular signal.We demonstrate the expression of mRNA for P2Y2 in both PC-Cl3 and PC-E1Araf cells; mRNAs for P2Y1, P2Y4, P2Y6 and P2Y11 were absent. In both cell lines activation of P2Y2 receptor provokes a transient increase in [Ca(2+)](i) followed by a lower sustained phase persisting for over 5min in PC-Cl3 and only 1.5 min in PC-E1Araf cells. In both cell lines the [Ca(2+)](i) reached a plateau level significantly higher than the basal [Ca(2+)](i) level persisting for over 10 min. Removal of extracellular Ca(2+) reduced the initial transient response to ATP in PC-Cl3, but not in PC-E1Araf cells, and completely abolished the plateau phase in both cell lines.In the presence of extracellular Ca(2+) thapsigargin (TG) caused a rise in [Ca(2+)](i) significantly higher in PC-Cl3 than transformed PC-E1Araf cells, while in Ca(2+)-free medium the effect of TG was similar in both cell lines. The capacitative Ca(2+)-entry in PC-Cl3 resulted significantly higher than in PC-E1Araf cells.Further studies were performed in order to investigate whether the different effects of ATP on [Ca(2+)](i) was due to variation in divalent cation plasma membrane permeability. PC-E1Araf cells showed a much lower permeability to Ca(2+), Ba(2+), Sr(2+), Mn(2+), and Co(2+) that may be responsible for the differences in purinergic Ca(2+) signaling pathway with respect to parental PC-Cl3 cells.  相似文献   

3.
4.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

5.
6.
7.
谷氨酸促进大鼠海马神经元的内钙升高   总被引:1,自引:0,他引:1  
谷氨酸能影响大鼠海马神经元胞内钙信号的变化,进而影响海马神经元神经冲动的发放和学习记忆过程。运用荧光测钙技术实时监测了大鼠海马神经元内钙信号的动态变化,同时分析了谷氨酸对其胞内钙信号的影响。试验表明:谷氨酸能够显著提高胞内游离钙离子的浓度;细胞外钙离子的存在、谷氨酸刺激时间及刺激频率的增加都能引起胞内钙信号不同程度的升高;但谷氨酸的过度刺激会引起钙离子浓度的超负荷,从而导致神经元结构和功能的损坏。  相似文献   

8.
We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.  相似文献   

9.
10.
Histamine stimulation of swine arterial smooth muscle is associated with a high [Ca2+]i sensitivity for increases in myosin light-chain phosphorylation. In contrast, KCl depolarization produces a relatively lower [Ca2+]i sensitivity (i.e., similar increases in [Ca2+]i induce less myosin phosphorylation). We evaluated whether 1) artifacts in the methodology for measuring [Ca2+]i or 2) true alterations in the [Ca2+]i sensitivity of myosin light-chain kinase were responsible for these apparent changes in the [Ca2+]i sensitivity of phosphorylation. The [Ca2+]i sensitivity of phosphorylation was higher with histamine stimulation regardless of whether the [Ca2+]i indicator was aequorin (which was loaded intracellularly by reversible hyperpermeabilization) or Fura 2 (which was loaded intracellularly by incubation of the tissues in Fura 2 AM). Aequorin and Fura 2 appeared to detect qualitatively similar stimulus-induced changes in [Ca2+]i with the exception that the initial response to histamine stimulation was different (histamine initially induced a large aequorin light transient and a relatively smaller increase in Fura 2 fluorescence). The [Ca2+]i sensitivity of myosin light-chain kinase extracted from KCl depolarized tissues was lower than the [Ca2+]i sensitivity of myosin light-chain kinase extracted from unstimulated or histamine stimulated tissues. These results suggest that depolarization specifically modifies myosin light-chain kinase to decrease its [Ca2+]i sensitivity. Changes in the [Ca2+]i sensitivity of myosin light-chain phosphorylation are not an artifact of the [Ca2+]i measurement technique.  相似文献   

11.
12.
13.
14.
Tang J  Zhang JH 《Life sciences》2000,68(4):475-481
Activity of reactive oxygen species is elevated in diabetes mellitus and has been implicated in the destruction of cellular components. The toxic effect of reactive oxygen species was investigated by testing the effect of H2O2 on [Ca2+]i in isolated islets of Langehans. H2O2 increased [Ca2+]i in a dose-dependent manner, which was irreversible at high concentrations. The maximum effect of H2O2 on [Ca2+]i was larger than those of KCl, glucose, ATP, carbachol and endothelin-1. The effect of H2O2 was only partially attenuated by removal of external Ca2+ and by the in-organic Ca2+ channel blocker nickel, but was not blocked by voltage-dependent or -independent Ca2+ channel blockers nimodipine, nicardipine, SK&F 96365, econazole and lanthanum. H2O2, disrupted [Ca2+]i homeostasis in islets by affecting both release and influx of Ca2+ and causing dysfunction of Ca2+ clearance systems and may contribute to the pathological process of diabetes.  相似文献   

15.
16.
17.
The present study was designed to evaluate the role of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in the difference between P2Y(1)- and P2Y(2)-mediated vasodilatations in cerebral arteries. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. The endothelium was selectively loaded with fura 2, a fluorescent Ca(2+) indicator, for simultaneous measurement of endothelial [Ca(2+)](i) and diameter. Luminal administration of 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP), an endothelial P2Y(1) agonist, resulted in purely nitric oxide (NO)-dependent dilation and [Ca(2+)](i) increases up to approximately 300 nM (resting [Ca(2+)](i) = 145 nM). UTP, an endothelial P2Y(2) agonist, resulted in dilations that were both endothelium-derived hyperpolarizing factor (EDHF)- and NO-dependent with [Ca(2+)](i) increases to >400 nM. In the presence of N(G)-nitro-L-arginine-indomethacin to inhibit NO synthase and cyclooxygenase, UTP resulted in an EDHF-dependent dilation alone. The [Ca(2+)](i) threshold for NO-dependent dilation was 220 vs. 340 nM for EDHF. In summary, the differences in the mechanism of vasodilatation resulting from stimulation of endothelial P2Y(1) and P2Y(2) purinoceptors result in part from differential [Ca(2+)](i) responses. Consistent with this finding, these studies also demonstrate a higher [Ca(2+)](i) threshold for EDHF-dependent responses compared with NO.  相似文献   

18.
When energy metabolism is disrupted, endothelial cells lose Ca(2+) from endoplasmic reticulum (ER) and the cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases. The importance of glycolytic energy production and the mechanism of Ca(2+) loss from the ER were analyzed. Endothelial cells from porcine aorta in culture and in situ were used as models. 2-Deoxy-D-glucose (2-DG, 10 mM), an inhibitor of glycolysis, caused an increase in [Ca(2+)](i) (measured with fura 2) within 1 min when total cellular ATP contents were not yet affected. Stimulation of oxidative energy production with pyruvate (5 mM) did not attenuate this 2-DG-induced rise of [Ca(2+)](i), while this maneuver preserved cellular ATP contents. The inhibitor of ER-Ca(2+)-ATPase, thapsigargin (10 nM), augmented the 2-DG-induced rise of [Ca(2+)](i). Xestospongin C (3 microM), an inhibitor of D-myo-inositol 3-phosphate [Ins(3)P]-sensitive ER-Ca(2+) release, abolished the rise. The results demonstrate that the ER of endothelial cells is very sensitive to glycolytic metabolic inhibition. When this occurs, the ER Ca(2+) store is discharged by opening of the Ins(3)P-sensitive release channel. Xestospongin C can effectively suppress the early [Ca(2+)](i) rise in metabolically inhibited endothelial cells.  相似文献   

19.
Liang WZ  Lu CH 《Life sciences》2012,90(17-18):703-711
AimsThis study examined whether the essential oil component carvacrol altered cytosolic free Ca2+ level ([Ca2+]i) and viability in human glioblastoma cells.Main methodsThe Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Cell viability was measured by detecting reagent WST-1. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry.Key findingsCarvacrol at concentrations of 400–1000 μM induced a [Ca2+]i rise in a concentration-dependent fashion. The response was decreased partially by removal of extracellular Ca2+. Carvacrol-induced Ca2+ signal was not altered by nifedipine, econazole, SK&;F96365, and protein kinase C activator phorbol myristate acetate (PMA), but was inhibited by the protein kinase C inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) abolished carvacrol-induced [Ca2+]i rise. Incubation with carvacrol also abolished thapsigargin or BHQ-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished carvacrol-induced [Ca2+]i rise. At concentrations of 200–800 μM, carvacrol killed cells in a concentration-dependent manner. This cytotoxic effect was not changed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N–-tetraacetic acid/acetoxy methyl (BAPTA/AM). Annexin V/propidium iodide staining data suggest that carvacrol (200, 400 and 600 μM) induced apoptosis in a concentration-dependent manner. At concentrations of 200, 400 and 600 μM, carvacrol induced production of ROS.SignificanceIn human glioblastoma cells, carvacrol induced a [Ca2+]i rise by inducing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via protein kinase C-sensitive, non store-operated Ca2+ channels. Carvacrol induced cell death that might involve ROS-mediated apoptosis.  相似文献   

20.
Jan CR  Tseng CJ 《Life sciences》2000,66(18):1753-1762
The effect of nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells has been investigated. NDGA (10-100 microM) increased [Ca2+]i concentration-dependently. The [Ca2+]i increase comprised an initial slow rise and a plateau over a time period of 5 min. Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM NDGA and abolished that induced by 10 microM NDGA. In Ca(2+)-free medium, pretreatment with 0.1 mM NDGA for 12 min abolished the [Ca2+]i increase induced by the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) and the endoplasmic reticulum (ER) Ca2+ pump inhibitor thapsigargin (1 microM). However, 0.1 mM NDGA still increased [Ca2+]i after Ca2+ stores had been depleted by pretreating with 2 microM CCCP, 1 microM thapsigargin and 0.1 mM cyclopiazonic acid. NDGA (50 microM) activated Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength, which was almost abolished by 50 microM La3+. This implies NDGA induced Ca2+ influx mainly via a La(3+)-sensitive pathway. Consistently, 50 microM La3+ pretreatment inhibited 0.1 mM NDGA-induced [Ca2+]i increase. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 0.1 mM NDGA in Ca(2+)-free medium, suggesting NDGA activated capacitative Ca2+ entry. Pretreatment with 0.1 mM NDGA for 200 s prior to Ca2+ did not alter 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 0.1 mM NDGA-induced Ca2+ release by 65%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This suggests NDGA-induced Ca2+ release was independent of inositol 1,4,5-trisphosphate (IP3), but was modulated by phospholipase A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号