首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitve) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Skeletal myotubes responded to passive stretch by increased amino acid uptake (as measured with [3H]α-aminoisobutyric acid), increased incorporation of amino acids into total cellular protein and myosin heavy chains, and increased accumulation of total cellular protein and myosin heavy chains. These alterations were preceded by an increase in the uptake of ouabain-sensitive rubidium-86 (86Rb+), a potassium tracer used to measure membrane sodium pump activity (Na+K+ATPase). This stretch-induced stimulation of 86Rb+ uptake resulted from a 60-70% increase in the Vmax of the Na pump with little change in the Km. [3H] ouabain binding studies showed no stretch-induced change in the number of membrane Na pumps, indicating that stretch activates the Na pumps that are already present on the cell surface. Since the stretch-induced increases in amino acid transport and amino acid incorporation into proteins were inhibited by ouabain, Na pump activation may be involved in stretch-induced cell growth of skeletal muscle cells by hypertrophy.  相似文献   

3.
The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content in tissue cultured, avlan skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the effects of Dex and mechanical stretch on prostaglandin production and prostaglandin H synthase (PGHS) activity were examined. In static cultures, 10?8 M Dex reduced PGF production 55–65% and PGE2 production 84–90% after 24–72 h of incubation. Repetitive 10% stretch-relaxations of non-Dex-treated cultures increased PGF efflux 41% at 24 h and 276% at 72 h, and increased PGE2 production 51% at 24 h and 236% at 72 h. Mechanical stimulation of Dex-treated cultures increased PGF production 162% after 24 h, returning PGF efflux to the level of non-Dex-treated cultures. At 72 h, stretch increased PGF efflux 65% in Dex-treated cultures. Mechanical stimulation of Dex-treated cultures also increased PGE2 production at 24 h, but not at 72 h. Dex reduced PGHS activity in the muscle cultures by 70% after 8–24 h of incubation, and mechanical stimulation of the Dex-treated cultures increased PGHS activity by 98% after 24 h. Repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by mitigating the Dex-induced declines in PGHS activity and prostaglandin production. © 1994 wiley-Liss, Inc.  相似文献   

4.
Akt/protein kinase B is a serine/threonine kinase that has emerged as a critical signaling component for mediating numerous cellular responses. Contractile activity has recently been demonstrated to stimulate Akt signaling in skeletal muscle. Whether physiological exercise in vivo activates Akt is controversial, and the initiating factors that result in the stimulation of Akt during contractile activity are unknown. In the current study, we demonstrate that treadmill running exercise of rats using two different protocols (intermediate high or high-intensity exhaustive exercise) significantly increases Akt activity and phosphorylation in skeletal muscle composed of various fiber types. To determine if Akt activation during contractile activity is triggered by mechanical forces applied to the skeletal muscle, isolated skeletal muscles were incubated and passively stretched. Passive stretch for 10 min significantly increased Akt activity (2-fold) in the fast-twitch extensor digitorum longus (EDL) muscle. However, stretch had no effect on Akt in the slow-twitch soleus muscle, although there was a robust phosphorylation of the stress-activated protein kinase p38. Similar to contraction, stretch-induced Akt activation in the EDL was fully inhibited in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin, whereas glycogen synthase kinase-3 (GSK3) phosphorylation was only partially inhibited. Stretch did not cause dephosphorylation of glycogen synthase on GSK3-targeted sites in the absence or presence of wortmannin. We conclude that physiological exercise in vivo activates Akt in multiple skeletal muscle fiber types and that mechanical tension may be a part of the mechanism by which contraction activates Akt in fast-twitch muscles.  相似文献   

5.
Normal rat kidney (NRK) cells growth arrested by picolinic acid and isoleucine deprivation exhibit an increased response to certain agents (i.e., prostaglandin E1, (?)-isoproterenol, and cholera toxin) which elevate intracellular cyclic AMP levels. The enhanced hormonal response is apparently due, at least in part, to increased adenylate cyclase activity. Adenylate cyclase activities measured in the presence of GTP, GTP plus prostaglandin E1, and GTP plus (?)-isoproterenol are increased two- to threefold in membranes prepared from treated cells. In contrast, basal activity is potentiated only 20 to 50% and activity determined in the presence of fluoride is only marginally altered. Also of interest is the increase in cholera toxin activation of cyclase activity in the treated cells. Lower concentrations of cholera toxin (5 ng/ml) are required to achieve maximal stimulation of cyclase activity from picolinic acid-treated and isoleucine-deprived cells; maximal stimulation of control cell adenylate cyclase is attained with 25 to 50 ng/ml cholera toxin. Picolinic acid treatment and isoleucine deficiency both have been shown to arrest NRK cell growth in the G1 phase of the cell cycle. However, results with cells arrested in G1 by serum starvation and by growth to high cell population density indicate that G1 specific growth arrest does not appear to account for the increase in hormonal responsiveness. Chelation of inhibitory metals and proteolytic activation also do not appear to be involved in the mechanism by which picolinic acid enhances cyclic AMP formation. Rather, the results suggest that the treated cells have an increased amount of an active GTP-dependent function required for hormone and cholera toxin stimulation of adenylate cyclase. Thus, picolinic acid treatment and isoleucine deprivation may provide a useful means of modulating the GTP-dependent step required to potentiate hormonal responsiveness.  相似文献   

6.
We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.  相似文献   

7.
8.
Prostaglandins F and F, at high concentrations (≥28 μM) enhanced cyclic AMP accumulation in dog thyroid slices. At lower concentrations, they inhibited the cyclic AMP accumulation induced by thyrotropin (TSH), prostaglandin E1, and cholera toxin. This effect was rapid in onset and of short duration, calcium-dependent and suppressed by methylxanthines. Prostaglandin Fα also inhibited TSH-induced secretion and activated iodine binding to proteins. These characteristics are similar to those of carbamylcholine action, except that prostaglandins F did not enhance cyclic GMP accumulation. The effect of prostaglandin Fα was not inhibited by atropine, phentolamine and adenosine deaminase and can therefore not be ascribed to an induced secretion of acetylcholine, norepinephrine or adenosine. It is suggested that prostaglandins F act by increasing influx of extracellular Ca2+. Arachidonic acid also inhibited the TSH-induced cyclic AMP accumulation. However this effect was specific for TSH, it was enhanced in the absence of calcium and was not inhibited by methylxanthines or by indomethacin at concentrations which completely block its conversion to prostaglandin Fα. Arachidonic acid action is sustained. This suggests that arachidonic acid inhibits thyroid adenylate cyclase at the level of its TSH receptor and that this effect is not mediated by prostaglandin Fα or any other cyclooxygenase product.  相似文献   

9.
10.
Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 and Balb/c3T3 fibroblasts and in neurons the IGF-I receptor is coupled to an inhibitory G protein, G(i), which mediates G(beta)gamma-dependent MAP kinase activation. The present study determined whether in normal human intestinal smooth muscle cells the IGF-I receptor activates a heterotrimeric G protein and the role of G protein activation in mediating IGF-I-induced growth. IGF-I elicited IGF-I receptor tyrosine phosphorylation, resulting in the specific activation of G(i2). G(beta)gamma subunits selectively mediated IGF-I-dependent MAP kinase activation; G(alpha)i2 subunits selectively mediated IGF-I-dependent inhibition of adenylyl cyclase activity. IGF-I-stimulated MAP kinase activation and growth were inhibited by pertussis toxin, an inhibitor of G(i)/G(o) activation. Cyclic AMP inhibits growth of human intestinal muscle cells. IGF-I inhibited both basal and forskolin-stimulated cAMP levels. This inhibition was attenuated in the presence of pertussis toxin. IGF-I stimulated phosphatidylinositol 3-kinase activation, in contrast to MAP kinase activation, occurred independently of G(i2) activation. These data suggest that IGF-I specifically activates G(i2), resulting in concurrent G(beta)gamma-dependent stimulation of MAP kinase activity and growth, and G(alpha)i2-dependent inhibition of cAMP levels resulting in disinhibition of cAMP-mediated growth suppression.  相似文献   

11.
Summary Human recombinant interleukin-1 (HrIL-1) inhibited WEHI-3B cell growth in a dose-related manner (10–10000 U/ml). Prostaglandin E2 at high concentrations (1000 ng/ml) also inhibited cell growth. When added together, HrIL-1 and prostaglandin E2 inhibited WEHI-3B growth in a synergistic manner (HrIL-1 concentrations of 10–10000 U/ml and prostaglandin E2 concentrations of 10–1000 ng/ml). In contrast to the effects of the cyclooxygenase metabolite of arachidonic acid leukotriene C4, a lipoxygenase metabolite, reversed the cytostatic action of HrIL-1.  相似文献   

12.
Abstract: Activation of glial cells and the consequent release of cytokines, proteins, and other intercellular signaling molecules is a well-recognized phenomenon in brain injury and neurodegenerative disease. We and others have previously described an inducible prostaglandin G/H synthase, known as PGHS-2 or cyclooxygenase-2, that is up-regulated in many cell systems by cytokines and growth factors and down-regulated by glucocorticoid hormones. In cultured mouse astrocytes we observed increased production of prostaglandin E2 (PGE2) after stimulation with either interleukin-1β (IL-1β) or the protein kinase C activator phorbol 12-myristate 13-acetate (TPA). This increase in PGE2 content was blocked by pretreatment with dexamethasone and correlated with increases in cyclooxygenase activity measured at 4 h. Northern blots revealed concomitant increases in PGHS-2 mRNA levels that peaked at 2 h and were dependent on the dosage of IL-1β. Dexamethasone inhibited this induction of PGHS-2 mRNA by IL-1β. TPA, basic fibroblast growth factor, and the proinflammatory factors tumor necrosis factor α and lipopolysaccharide, but not interleukin-6, also stimulated PGHS-2 mRNA expression. Relative to IL-1β, the greater increases in PGE2 production and cyclooxygenase activity caused by TPA correlated with a greater induction of PGHS-2 mRNA. Furthermore, NS-398, a specific inhibitor of cyclooxygenase-2, blocked >80% of the cyclooxygenase activity in TPA-treated astrocytes. These findings indicate that increased expression of PGHS-2 contributes to prostaglandin production in cultured astrocytes exposed to cytokines and other factors.  相似文献   

13.
The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca2+-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Gαi/o antibodies. However, there is still no report which Gα proteins are involved in the activation process of TRPC4. Among Gα proteins, only Gαi protein can activate TRPC4 channel. The activation effect of Gαi was specific for TRPC4 because Gαi has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Gαi is involved specifically in the activation of TRPC4.  相似文献   

14.
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of β-adrenergic receptor (β-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and β-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by “fetal” gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating β-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the Gαq-coupled angiotensin II AT1 receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-Gαq coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKCα also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKCα in transgenic mice led to impaired β-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired β-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and β-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.  相似文献   

15.
Mechanotransduction is critical to the maintenance and growth of skeletal muscle, but the mechanism by which cellular deformations are converted to biochemical signals remains unclear. Among the earliest and most ubiquitous responses to mechanical stimulation is the phosphorylation and activation of mitogen-activated protein kinases, in particular ERK2. Caveolin-3 (CAV-3) binds ERK2 and its upstream activators in inactive states on the caveolae of resting muscle. Caveolae are deformed by stretch, and it was hypothesized that this deformation might disrupt the CAV-3-dependent inhibition of ERK2 to affect stretch-induced activation. Stretch-induced phosphorylation of ERK2 in myotubes was both amplitude and velocity dependent, consistent with a viscoelastic mechanism, such as deformation of caveolae. Chemical disruption of caveolae by cholesterol depletion increased ERK2 activation by up to 176%. Small interfering RNA oligomers were then used to knock down expression of CAV-3 in cultured myotubes before mechanical stimulation, with the expectation that reducing CAV-3 expression would eliminate the stretch-induced activation of ERK2. Knockdown reduced CAV-3 protein content by 55% but did not significantly alter the stretch-induced increase in ERK2 phosphorylation, suggesting that CAV-3 is not an essential element of the mechanotransduction pathway, although the limited extent of knockdown limits the strength of this conclusion.  相似文献   

16.
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.  相似文献   

17.
Mechanicalstretch has been implicated in phenotypic changes as an adaptiveresponse to stretch stress physically loaded in bladder smooth musclecells (BSMCs). To investigate stretch-induced signaling, we examinedthe mitogen-activated protein kinase (MAPK) family using rat primaryBSMCs. When BSMCs were subjected to sustained mechanical stretch usingcollagen-coated silicon membranes, activation of c-JunNH2-terminal kinase (JNK) was most relevant among three subsets of MAPK family members: the activity was elevated from 5 minafter stretch and peaked at 10 min with an 11-fold increase. Activationof p38 was weak compared with that of JNK, and ERK was notactivated at all. JNK activation by mechanical stretch was totallydependent on extracellular Ca2+ and inhibited byGd3+, a blocker of stretch-activated (SA) ion channels.Nifedipine and verapamil, inhibitors for voltage-dependentCa2+ channels, had no effect on this JNK activation.Moreover, none of the inhibitors pertussis toxin, genistein,wortmannin, or calphostin C affected stretch-induced JNK activation,indicating that G protein-coupled and tyrosine kinase receptors areunlikely to be involved in this JNK activation. On the other hand, W-7,a calmodulin inhibitor, and cyclosporin A, a calcineurin inhibitor,prevented JNK activation by stretch. These results suggest a novelpathway for stretch-induced activation of JNK in BSMCs: mechanicalstretch evokes Ca2+ influx via Gd3+-sensitiveSA Ca2+ channels, resulting in JNK activation underregulation in part by calmodulin and calcineurin.

  相似文献   

18.
Knowledge of the events underlying satellite cell activation and the counterpart maintenance of quiescence is essential for planning therapies that will promote the growth and regeneration of skeletal muscle in healthy, disease and aging. By modeling those events of satellite cell activation in studies of single muscle fibers or muscles in culture, the roles of mechanical stretching and nitric oxide are becoming understood. Recent studies demonstrated that stretch-induced activation is very rapid and exhibits some features of satellite cell heterogeneity. As well, gene expression studies showed that expression of the c-met receptor gene rises rapidly after stretching muscles in culture compared to those without stretch. This change in gene expression during activation, and the maintenance of quiescence in both normal and dystrophic muscles are dependent on NO, as they are blocked by inhibition of nitric oxide synthase (NOS). Mechanical, contractile activity is the defining feature of muscle function. Therefore, ongoing studies of stretch effects in satellite cell activation and quiescence in quiescent fiber and muscle cultures provides appropriate models by which to explore the regulatory steps in muscle in vivo under many conditions related to disease, repair, rehabilitation, growth and the prevention or treatment of atrophy.  相似文献   

19.
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.  相似文献   

20.
Lactacystin, an inhibitor of proteasome activity, amplifies prostaglandin I2 production by rat liver cells stimulated by 12-O-tetradecanoylphorbol-13-acetate, transforming growth factor-alpha or interleukin-1. Lactacystin also stimulates the cell's release of arachidonic acid (AA) and increases the cyclooxygenase activity in these cells. In serum deprived cells, the enhanced AA release is reduced, cyclooxygenase activity on exogenous AA is increased and endogenous production of prostaglandin I2 is unchanged. These findings suggest that, in vivo, the ratio of dividing to quiescent cells in a tissue may influence eicosanoid production. The increases in prostaglandin I2 production, AA release and cyclooxygenase activity on exogenous AA resulting from the combined lactacystin and 12-O-tetradecanoylphorbol-13-acetate treatment are inhibited by actinomycin or cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号