首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for a secreted chemorepellent that directs glioma cell invasion   总被引:2,自引:0,他引:2  
Secreted chemotropic cues guide the migration of neuronal and glial cell precursors during neural development. It is not known if chemotropism contributes to directing the invasion of brain tissue by glioma cells. A model system has been developed that allows quantification of invasive behavior using gliomas spheroids embedded in collagen gels. Here we provide evidence that glioma spheroids secrete a chemorepellent factor(s) that directs cells away from the spheroid and into the collagen matrix. The relationship between total invasion, cell number, and implantation distance suggests that glioma cells respond to a gradient of the chemorepellent cue(s) that is well established at 48 h. C6 astrocytoma cells normally invade the collagen at an angle perpendicular to the spheroid edge. In contrast, an adjacent spheroid causes cells to turn away from their normal trajectory and slow their rate of invasion. Astrocytoma cells are repelled by an adjacent glioma spheroid but rapidly infiltrate astrocyte aggregates, indicating that astrocytes do not express the repellent cue. Uniform concentrations of repellent factor(s) in spheroid conditioned medium overwhelm endogenous gradients and render glioma cells less able to exhibit this chemotropic response. Concentration gradients of spheroid conditioned medium in cell migration assays also demonstrate the chemorepellent cue(s)'s tropic effect. Our findings indicate that glioma spheroids produce a secreted diffusible cue(s) that promotes glioma cell invasion. Identification of this factor(s) may advance current therapies that aim to limit tumor cell invasion.  相似文献   

2.
During the second phase of osteogenesis in vitro, rat osteoblasts secrete inducer(s) of chemotaxis and chemoinvasion of endothelial and tumor cells. We report here the characterization and purification from mature osteoblast conditioned medium of the agent chemotactic for endothelial cells. The chemoactive conditioned medium specifically induces directional migration of endothelial cells, not affecting the expression and activation of gelatinases, cell proliferation, and scattering. Directional migration induced in endothelial cells by conditioned medium from osteoblasts is inhibited by pertussis toxin, by blocking antibodies to integrins alpha(1), beta(1), and beta(3), and by antibodies to metalloproteinase 2 and 9. The biologically active purified protein has two sequences, coincident with the amino-terminal amino acids, respectively, of the alpha(1) and of the alpha(2) carboxyl propeptides of type I collagen, as physiologically produced by procollagen C proteinase. Antibodies to type I collagen and to the carboxyl terminus of alpha(1) or alpha(2) chains inhibit chemotaxis. The chemoattractant is the propeptide trimer carboxyl-terminal to type I collagen, and its activity is lost upon reduction. These data illustrate a previously unknown function for the carboxyl-terminal trimer, possibly relevant in promoting endothelial cell migration and vascularization of tissues producing collagen type I.  相似文献   

3.
We investigated the relative roles of basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGF-b) on bovine aortic endothelial cell mitogenesis and morphogenesis using two-dimensional Petri dish cultures and a threedimensional hydrated collagen gel. bFGF alone stimulated endothelial cell proliferation with an EC50 of 0.5 ng/ml. At bFGF levels greater than 2.5 ng/ml, morphologic alterations in confluent monolayers predominated; cells changed from a cobblestone morphology to an elongated cell pattern and showed enhanced migration into a denuded area of a Petri dish. In the three-dimensional model, exposure of endothelial cell monolayers to high bFGF levels stimulated minor cell migration directly under the monolayer but no invasion into the gel matrix. In combination with bFGF, heparin potentiated morphogenic changes, but not mitogenesis. bFGF, modification of the antiproliferative effect of TGF-b in confluent cultures was evidenced by induction of endothelial cell sprouting in response to 0.5 ng/ml TGF-b and 10–20 ng/ml bFGF in two-dimensional cultures. On collagen gels, endothelial cells migrated into the deep layers of the gel in a dose-dependent manner: invasion was maximal at 0.3–0.7 ng/ml TGF-b with decreased invasion at higher concentrations. The optimal collagen concentration that supported cell invasion was 0.075% collagen with the number of invading cells decreasing with increasing collagen gel density. By scanning electron microscopy, invading endothelial cells assumed a fibroblast-like appearance with slender cell extensions. We concluded that bFGF and TGF-b had independent effects on endothelial cell morphology and mitogenesis in culture. In combination at specific doses, these agents stimulated sprouting in the two-dimensional model and cell invasion in a collagen gel model. Morphogenic changes may be the primary event in determining angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Cultured capillary endothelial cells, derived from bovine brain, and maintained on a plastic substratum synthesized predominantly interstitial collagens of which approximately 75 per cent were secreted into the medium. When grown on a native hydrated collagen type I gel, although no marked alteration in the 'collagen synthetic pattern' was observed, the overall level of collagen synthesis was increased by approximately 100 per cent. More dramatic, however, was the alteration in the distribution of these molecules between medium and cell layer. Interstitial collagens produced by cells grown on collagen gels were almost exclusively associated with the cell layer or collagenous gel. These studies, thus, demonstrate that an extracellular matrix may exert a considerable influence on the cellular synthetic activities and possibly cellular polarity of capillary endothelial cells.  相似文献   

5.
Ramsohoye  P.V.  Fritz  I.B. 《Neurochemical research》1998,23(12):1545-1551
Factors secreted by C6 glioma cells which induce electrical resistances across endothelial monolayers in an in vitro blood-brain barrier model have been partially characterised for the first time. These transendothelial electrical resistances (TEERs) were only evident when cell-free conditioned medium derived from C6 glioma cells was applied to the basolateral surfaces of confluent ECV304 or ECV304-9 cells which are both human umbilical vein endothelial cell lines (HUVEC). Electrical resistance values as high as 600 ohm. sq cm were obtained with this blood-brain barrier model and ultrafiltration techniques suggest that any factor(s) in the conditioned medium responsible for these TEERs have molecular masses of less than 1000 Da. Enzymic proteolysis and heat treatment carried out on the conditioned medium failed to inhibit its effect on the HUVEC monolayers suggesting that these C6 cell-secreted factors are unlikely to be proteins.  相似文献   

6.
Tumor-promoting phorbol esters induce angiogenesis in vitro   总被引:48,自引:0,他引:48  
R Montesano  L Orci 《Cell》1985,42(2):469-477
A crucial event during angiogenesis is the invasion of the perivascular extracellular matrix by sprouting endothelial cells. To investigate the possible role of proteases in endothelial cell invasiveness in vitro, bovine microvascular endothelial cells (BMEC) grown on collagen gels were treated with phorbol myristate acetate (PMA), a tumor promoter that markedly increases their production of collagenase and plasminogen activator. Whereas control BMEC were confined to the surface of the gels, PMA-treated BMEC invaded the underlying collagen matrix, where they formed an extensive network of capillary-like tubular structures. This phenomenon, which mimics some of the events occurring during angiogenesis in vivo, required protein synthesis and intercellular contact, was accompanied by collagen degradation, and was prevented by the metalloprotease inhibitor 1,10-phenanthroline.  相似文献   

7.
Recent studies have shown that the extracellular matrix modifies the behaviour of endothelial cells. We have studied the effects of extracellular matrix components on retinal capillary endothelial cell migration and proliferation. Bovine retinal capillary endothelial cells were selectively cultured from collagenase-digested microvessel fragments. In a filter system for the assessment of migration, endothelial cells responded to substrate-bound fibronectin but not to soluble fibronectin. Cell migration on collagen- or gelatin-coated filters was minimal, and these cells failed to adopt a spread morphology, remaining instead as round cells. Cell replication was quantified using a protein dye binding assay for adherent cells in 96 well plates. Serum was essential for growth irrespective of the substrate. Cells harvested from microvessel cultures proliferated more rapidly on collagen- and gelatin-coated plastic than on fibronectin and were unaffected by additions to the medium such as endothelial cell conditioned medium, whereas cells proliferating directly from the microvessels grew at a faster rate on fibronectin and also responded to conditioned medium supplement. When cultured on collagen gels, initial microvessel cells and harvested cells required surface fibronectin in order to adopt a cobblestone morphology. These results show that fibronectin is a requirement for bovine retinal capillary endothelial cell migration, but proliferation of these cells can be supported, with slight differences, by both fibronectin and collagen provided serum growth factors are present. These findings are relevant to the early phase of angiogenesis in which migration and proliferation of endothelial cells occurs.  相似文献   

8.
In the late stages of the tissue repair process, as well as during normal tissue turnover, tissue homeostasis may rely mostly on autocrine mechanisms. Accordingly, we have cultured normal human fibroblasts on plastic surfaces and within three-dimensional collagen gels in order to study, in this environment, the action of autologous medium conditioned by the same cells. We have observed that inside collagen gels the autologous medium strongly restrains cell proliferation, due to fibroblast-secreted growth factors, whose inhibitory effect can be annulled by suramin. Furthermore, concerning extracellular matrix formation, conditioned medium has no effect on novel collagen synthesis, while it up-regulates collagenase MMP-1 only in cultures on plastic. On the other hand, it strongly inhibits the secretion of the collagenase inhibitor TIMP-1, irrespective of the substratum. This effect is completely blocked by SB 203580, an inhibitor of the p38 MAP kinase. The above suggest the presence of an autoregulatory mechanism involved in tissue homeostasis.  相似文献   

9.
Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing.  相似文献   

10.
The formation of microvascular sprouts during angiogenesis requires that endothelial cells move through an extracellular matrix. Endothelial cells that migrate in vitro generate forces of traction that compress (i.e., contract) and reorganize vicinial extracellular matrix, a process that might be important for angiogenic invasion and morphogenesis in vivo. To study potential relationships between traction and angiogenesis, we have measured the contraction of fibrillar type I collagen gels by endothelial cells in vitro. We found that the capacity of bovine aortic endothelial (BAE) cells to remodel type I collagen was similar to that of human dermal fibroblasts—a cell type that generates high levels of traction. Contraction of collagen by BAE cells was stimulated by fetal bovine serum, human plasma-derived serum, bovine serum albumin, and the angiogenic factors phorbol myristate acetate and basic fibroblast growth factor (bFGF). In contrast, fibronectin and immunoglobulin from bovine serum, several nonserum proteins, and polyvinyl pyrrolidone (a nonproteinaceous substitute for albumin in artificial plasma) were not stimulatory. Contraction of collagen by BAE cells was diminished by an inhibitor of metalloproteinases (1, 10-phenanthroline) at concentrations that were not obviously cytotoxic. Zymography of proteins secreted by BAE cells that had contracted collagen gels revealed matrix metalloproteinase 2. Subconfluent BAE cells that were migratory and proliferating were more effective contractors of collagen than were quiescent, confluent cells of the same strain. Moreover, bovine capillary endothelial cells contracted collagen gels to a greater degree than was seen with BAE cells. Collectively, our observations indicate that traction-driven reorganization of fibrillar type I collagen by endothelial cells is sensitive to different mediators, some of which, e.g., bFGF, are known regulators of angiogenesis in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Small vessel pulmonary endothelial cells were obtained from rat fetal lung at day 20 of gestation, and were maintained in culture to passage three for study. Endothelial cells grown on a collagen matrix with Dulbecco's minimal essential medium: Ham's F12 medium (1:1, v/v) supplemented with 20 ml/l fetal bovine serum, bovine pituitary extract (50 mg/l), endothelial cell growth supplement (100 mg/l), hydrocortisone (1 mg/l) and an increased (10 mmol/l) magnesium concentration retained the characteristic endothelial cell marker factor VIII antigen during the third passage in culture. The factors responsible for small vessel growth in the developing fetal lung are unknown. To test the hypothesis that small vessel pulmonary endothelial cells would respond to autocrine or paracrine growth factors the effects of conditioned media from fetal lung endothelial cells, fibroblasts and pneumocytes from lungs of the same gestational age were studied in vitro. None of the tested conditioned media had any effect on endothelial cell DNA synthesis in the presence of 20 ml/l fetal bovine serum. Since no paracrine or autocrine effects of conditioned media were observed, the effect of other growth factors that could be derived from the circulation, or from storage sites in subcellular matrix, were studied for effect. When endothelial cells were studied in the presence of 20 ml/l fetal bovine serum and 100 mg/l endothelial cell growth supplement they had enhanced DNA synthesis in response to the progression-type growth factors insulin (5 mg/l), insulin-like growth factor-I and insulin-like growth factor-II (20 micrograms/l) and epidermal growth factor (10 micrograms/l). In the absence of serum or endothelial growth supplement endothelial cell DNA synthesis was enhanced by the competence-type growth factors acidic and basic fibroblastic growth factors at 100 micrograms/l and platelet derived growth factor at 10 micrograms/l. In the absence of exogenous competence-type growth factors neutralizing antibodies to basic fibroblast growth factor reduce DNA synthesis. Of various cytokines tested only interleukin-1 (1 x 10(3) U/l) and tumor necrosis factor (25 x 10(4) U/l) had an effect on endothelial cell DNA synthesis. Endothelial cell division during fetal lung development may be controlled by progression growth factors present in serum, and by either autocrine release of the competence factor basic fibroblast growth factor or paracrine release of platelet-derived growth factor by other cell types.  相似文献   

12.
Heparin affin regulatory peptide (HARP) or pleiotrophin seems to be involved in the progression of several tumors of diverse origin. In this study, we tried to determine the role of HARP in rat C6 glioma cells by using an antisense strategy for inhibition of HARP expression. Decrease of the expression of endogenous HARP in C6 cells (AS-C6 cells) significantly increased proliferation, migration, and anchorage-independent growth of cells. Implantation of AS-C6 cells onto chicken embryo chorioallantoic membranes resulted in a significant increase of tumor-induced angiogenesis compared with that induced by non-transfected or C6 cells transfected with the plasmid alone (PC-C6 cells). In the same line, conditioned medium from AS-C6 cells significantly increased endothelial cell proliferation, migration, and tube formation in vitro compared with the effect of conditioned medium from C6 or PC-C6 cells. Interestingly, vascular endothelial growth factor (VEGF) induced C6 cell proliferation and migration, and SU1496, a selective inhibitor of VEGF receptor 2 (VEGFR2), blocked increased glioma cell growth, migration, and angiogenicity observed in AS-C6 cell cultures. The above results seem to be due to a direct interaction between HARP and VEGF in the culture medium of C6 and PC-C6 cells, while AS-C6 cells secreted comparable amounts of VEGF that do not interact with HARP. Collectively, these data suggest that HARP negatively affects diverse biological activities in C6 glioma cells, mainly due to binding of HARP to VEGF, which may sequester secreted VEGF from signalling through VEGFR2.  相似文献   

13.
The vascular endothelium in vivo is a remarkably quiescent cell layer that displays a highly differentiated and tissue-specific phenotype. Once established in culture, endothelial cells (EC) are phenotypically different from their in situ counterparts, displaying altered gene expression, increased mitotic index, and decreased cell density. To determine whether manipulating the microenvironment of cells in vitro would lead to a more differentiated phenotype, we cultured bovine aortic EC on floating collagen gels. EC cultured to confluence on floating gels for 24 or 48 hr display mitotic indices nearly identical to those of quiescent endothelium in vivo, nearly two log orders lower than that of EC cultured to confluence on plastic, and cell density on floating gels also resembles that observed for endothelium in vivo. Culture of EC on floating gels leads to decreased expression of platelet-derived growth factor-B, fibronectin, and fibronectin isoform ED-B, and increased levels of connexin40, relative to cells cultured on plastic. We conclude that culture of bovine aortic EC under standard culture conditions results in a phenotype reminiscent of development and/or wound healing, and that culturing them on a floating collagen gel leads to a more differentiated phenotype, reminiscent of that observed for large vessel EC in vivo.  相似文献   

14.
Recent studies have suggested that fibroblasts, widely distributed mesenchymal cells, not only function to sustain various organs and tissues as stroma cells but also act directly to regulate adjacent cell behavior including migration, proliferation, and differentiation. Since fibroproliferative diseases and lesions (fibroplasia) are accompanied by new capillary growth (angiogenesis), we hypothesized that fibroblasts may have direct effects on endothelial cell behavior, independent of the elaboration of extracellular matrix, that are relevant to complex process of angiogenesis. To test this hypothesis, bovine aortic endothelial cells were cocultured in collagen gels with human skin fibroblasts. This coculture system caused the endothelial cells to become spindle shaped and to organize into a capillary-like structure within the collagen gels. We found that fibroblast-conditioned medium (FCM) also induced endothelial cells initially to elongate and subsequently to organize into a capillary-like structure within collagen gels. While FCM had no significant effect on endothelial cell DNA synthesis, the soluble factor(s) in FCM increased endothelial cell motility in an in vitro wound assay and in a Boyden chamber assay. The chemoattractant(s) in FCM was alkaline (pH 9.0)—and acid (pH 3.0)—stable, relatively heat stable (stable at 60°C for 30 min, unstable at 98°C for 3 min), dithiothreitol (DTT)-sensitive, and bound to an anionic exchange resin (DEAE-cellulose). Another factor(s) stimulated endothelial cell reorganization into capillary-like structure both within a collagen gel and on a reconstituted basement membrane matrix, Matrigel. This factor(s) was alkaline (pH 9.0)—and acid (pH 3.0)—stable, heat (98°C for 3 min)stable, and DTT-sensitive and bound an anionic exchange resin (DEAE-cellulose). These in vitro results suggest that fibroblasts secrete soluble factors that can influence endothelial cell behaviors relevant to the angiogenesis process with possible implications for vascularization in fibroproliferative conditions.  相似文献   

15.
Summary Cocultures of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources, American Type Culture Collection and European Collection of Animal Cell Cultures, were evaluated as an in vitro model for the blood-brain barrier. Monolayers of endothelial cells grown in the presence or absence of glial cells were examined for transendothelial electrical resistance, sucrose permeability, morphology, multidrug resistance-associated protein expression, and P-glycoprotein expression and function. Coculture of glial cells with endothelial cells increased electrical resistance and decreased sucrose permeability across European endothelial cell monolayers, but had no effect on American endothelial cells. Coculture of European glial cells with endothelial cells caused cell flattening and decreased cell stacking with both European and American endothelial cells. No P-glycoprotein or multidrug resistance-associated protein was immunodetected in endothelial cells grown in glial cell-conditioned medium. Functional P-glycoprotein was demonstrated in American endothelial cells selected in vinblastine-containing medium over eight passages, but these cells did not form a tight endothelium. In conclusion, while European glial cells confer blood-brain barrier-like morphology and barrier integrity to European endothelial cells in coculture, the European endothelial-glial cell coculture model does not express P-glycoprotein, normally found at the blood-brain barrier. Further, the response of endothelial cells to glial factors was dependent on cell source, implying heterogeneity among cell populations. On the basis of these observations, the umbilical vein endothelial cell-glial cell coculture model does not appear to be a viable model for predicting blood-brain barrier penetration of drug molecules.  相似文献   

16.
Human endothelial cells release components into the growth medium that stimulate cell-substratum adhesion. Several macromolecular components were isolated by ultracentrifugation of the endothelial cell conditioned medium. The components were heterogeneous, consisting of several sizes when examined by sedimentation velocity and gel filtration. When the extracellular components were evaluated by electron microscopy, structurally discrete particles were observed. The extracellular components and the complexes mediated cell-substratum adhesion to both human umbilical and arterial endothelial cells. The majority of the extracellular components that promote endothelial cell adhesion were pelleted by ultracentrifugation. Although the complexes contained fibronectin, antibodies to fibronectin did not inhibit cell adhesion to the complexes. Significant inhibition of endothelial cell adhesion was observed in the presence of heparin and heparan sulfate. The supernatant fraction following ultracentrifugation of the growth medium contained a component that suppressed endothelial cell adhesion to culture dishes coated with fibronectin, type I collagen, and endothelial cell complexes. SDS-polyacrylamide gel electrophoresis indicated that the complexes contained several components, and the majority of the large-molecular-weight components were pelleted by ultracentrifugation. The conditioned medium from human endothelial cells contains specific complexes that promote cell-substratum adhesion and components that suppress cell-substratum adhesion.  相似文献   

17.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

18.
In an effort to obtain a useful in vitro model possessing some of the properties of the blood-brain barrier, we have investigated the properties and interactions of immortalized cell lines. Immortalised human umbilical vein endothelial cells (HUVEC-304), in co-culture with rat C6 glioma cells in a two-chambered assembly, form tight junctional complexes, and develop a permeability barrier having a high transcellular electrical resistance. The endothelial cells generate a barrier with greatest integrity in the presence of glioma cells, or in the presence of glioma cell conditioned medium. Under these conditions, the endothelial cells also display pronounced structural changes which do not occur in the absence of glioma cells. Morphological alterations include a flattening of cell shape from a cuboidal-type to a squamous-type of appearance, and a re-organization of F-actin microfilaments. The integrity of the barrier can be reversibly disrupted by osmotic shock or by tumor necrosis factor-alpha (TNF-α). We interpret these observations to indicate that co-cultures of immortalized vascular endothelial and C6 glioma cells provide a model for the investigation of cell-cell interactions required for the generation of a barrier having several properties of the blood-brain barrier. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The possibility of fibronectin production by C6 glioma cells was examined with assays which require protein synthesis. Proteins produced by C6 cells using radiolabeled amino acid precursors were tested for affinity to collagen by binding to immobilized gelatin. The predominant collagen binding protein made by C6 coelectrophoresed with fibronectin synthesized by control fibroblasts and with the larger of the two proteins in unlabeled fibronectin when applied to polyacrylamide gels with sodium dodecyl sulfate (SDS). In addition, C6 produced a larger collagen binding protein of approximately 270,000 molecular weight. Solubilities in urea solutions of the collagen-binding proteins made by C6 cells and fibroblasts were similar. Immunofluorescence showed fibronectin associated with the C6 cell monolayer, but less abundant than the fibronectin associated with fibroblasts. Results provide evidence for the production of fibronectin by the C6 glioma cell line.  相似文献   

20.
In this work, a cellular Potts model based on the differential adhesion hypothesis is employed to analyze the relative importance of select cell-cell and cell-extracellular matrix (ECM) contacts in glioma invasion. To perform these simulations, three types of cells and two ECM components are included. The inclusion of explicit ECM with an inhomogeneous fibrous component and a homogeneously dispersed afibrous component allows exploration of the importance of relative energies of cell-cell and cell-ECM contacts in a variety of environments relevant to in vitro and in vivo experimental investigations of glioma invasion. Simulations performed here focus chiefly on reproducing findings of in vitro experiments on glioma spheroids embedded in collagen I gels. For a given range and set ordering of energies associated with key cell-cell and cell-ECM interactions, our model qualitatively reproduces the dispersed glioma invasion patterns found for most glioma cell lines embedded as spheroids in collagen I gels of moderate concentration. In our model, we find that invasion is maximized at intermediate collagen concentrations, as occurs experimentally. This effect is seen more strongly in model gels composed of short collagen fibers than in those composed of long fibers, which retain significant connectivity even at low density. Additional simulations in aligned model matrices further elucidate how matrix structure dictates invasive patterns. Finally, simulations that allow invading cells to both dissolve and deposit ECM components demonstrate how Q-Potts models may be elaborated to allow active cell alteration of their surroundings. The model employed here provides a quantitative framework with which to bound the relative values of cell-cell and cell-ECM interactions and investigate how varying the magnitude and type of these interactions, as well as ECM structure, could potentially curtail glioma invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号