首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The buccal glands of adults of the Southern Hemisphere lamprey Geotria australis consist of a pair of small, bean-shaped, hollow sacs, embedded within the basilaris muscle in the region below the eyes and to either side of the piston cartilage. Each gland, which is lined by a simple columnar epithelium and surrounded by an incomplete layer of skeletal muscle, discharges its contents into the oral cavity via a long, narrow duct. In downstream migrating young adults, the epithelial cells are low columnar, intermediate in electron density, and contain dark-staining inclusions and numerous lipid-like droplets. After saltwater acclimation, the epithelial cells become taller and the numbers of dark-staining inclusions increase whereas those of lipid-like droplets decline. By the end of the marine phase, the epithelium is more folded and now also contains dark and light cells. The ultrastructure of the epithelium shows the characteristics of both apocrine and merocrine secretion. Although intra-epithelial nerve endings were not observed, axons and occasional neurons are present in the lamina propria. Since the skeletal muscle capsule is also well innervated and contains neurons, a local feed-back mechanism may regulate the release of buccal gland fluid by monitoring the luminal pressure. Contractions of the skeletal muscle capsule and movements of the basilaris muscle during feeding would presumably assist the movement of secretion along the duct. The secretion possesses anticoagulating and haemolytic properties.  相似文献   

2.
Endemic New Zealand frogs of the genus Leiopelma are from a basal lineage of extant anurans that release defensive secretions onto their skin when disturbed. Here, we characterize the gross anatomy and microscopic structure of the skin of L. archeyi, L. hochstetteri, and L. pakeka using stereoscopic, light and transmission electron microscopy. The terrestrial L. archeyi and L. pakeka possess dimorphic granular glands, categorized as type I and II, based on their frequency and morphological traits, whereas the semi‐aquatic L. hochstetteri lacks type I glands. This is the first report of differential dimorphism in anurans of the same genus. This dimorphism could be interpreted as an adaptation to different physiological or ecological needs of these species. However, species within this ancient genus share similar general gland morphology with other anurans, namely, a secretory unit containing storage granules ensheathed by myoepithelial cells. Type I glands are ellipsoid, large and contain a homogeneous mass of electron‐dense granules (1.8 ± 0.08 μm in diameter). Type II glands are round and contain larger heterogeneous granules (4.06 ± 0.16 μm) of varying densities. Exposure to noradrenaline causes the contraction of myoepithelial cells, resulting in bulk discharge of type I glands through the epidermal duct onto the skin surface. Differential release of secretions from dimorphic glands may be indicative of their functional specialisation in antipredatory or regulative roles. Mass spectrometric techniques were used to de novo sequence peptides present in the skin secretions of Leiopelma species. A total of 30 previously undescribed peptides from Leiopelma species were fully or partially sequenced. These peptides exhibited no similarity to any known compounds. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
The ultrastructure of the amphidial, oesophageal and excretory glands of N. americanus is described. There are two amphidial glands, and each is attached to a lateral hypodermal cord. Anteriorly the glands become associated with the amphidial sense organs. The amphidial glands synthesize complex secretion granules which appear to release their contents into the sense organ. Secretions thus pass over the amphidial cilia and exit via the amphidial pore. It is suggested that the secretory activity of these glands is under direct nervous control. There are three oesophageal glands, and each synthesizes dense secretion granules. The secretions of the oesophageal glands are released into the lumen of the oesophagus and into the buccal capsule. The two excretory glands are ventral in position and connected to the tubular excretory system. These glands synthesize secretion granules of varying density. Secretions from the excretory glands may exit via the excretory pore, or pass back into the tubular excretory system, or both.  相似文献   

4.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

5.
Summary Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis AI, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

6.
Formation of secretory vesicles in the noncellular secretory cavity of glandular trichomes of Cannabis saliva L. was examined by transmission electron microscopy. Two patterns of vesicle formation occurred during gland morphogenesis. 1) During initial phases of cavity formation small hyaline areas arose in the wall near the plasma membrane of the disc cell. Hyaline areas of elongated shape and different sizes were distributed throughout the wall and adjacent to the secretory cavity. Hyaline areas increased in size, some possibly fusing with others. These hyaline areas, possessing a membrane, moved into the cavity where they formed vesicles. As membraned vesicles they developed a more or less round shape and their contents became electron-dense. 2) During development of the secretory cavity and when abundant secretions were present in the disc cells, these secretions passed through the wall to accumulate as membraned vesicles of different sizes in the cavity. As secretions emerged from the wall, a membrane of wall origin delimited the secretory material from cavity contents. Vesicles released from the wall migrated in the secretory cavity and contacted the sheath where their contents permeated into the subcuticular wall as large or diffused quantities of secretions. In the subcuticular wall these secretions migrated to the wall–cuticle interface where they contributed to structural thickening of the cuticle. This study demonstrates that the secretory process in glands of Cannabis involves not only secretion of materials from the disc cell, but that the disc cell somehow packages these secretions into membraned vesicles outside the cell wall prior to deposition into the secretory cavity for subsequent structural development of the sheath.  相似文献   

7.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Early development of the secretory cavity of chemically fixed peltate glands in Humulus lupulus L. showed secretions with different densities, light, gray and dark, in the cytoplasm of disc cells and in the periplasmic space adjacent to the developing secretory cavity. Secretions were detected in the disc cell wall and subsequently in the developing secretory cavity under the subcuticular wall of the sheath. Light and gray secretions in the cavity possessed a membrane-like surface feature. Secretions were in contact with the irregular inner surface of the cuticle. Secretions contributed to the thickening of the cuticle, whereas the membrane-like surface feature contributed to a network of Cannabis striae distributed throughout the cuticle. This study supports an early development and organization of the secretory cavity in H. lupulus, parallel to those in Cannabis, and may represent common features for lipophilic glands in angiosperms.  相似文献   

9.
Caudal courtship glands (CCGs) are sexually dimorphic glands described in the skin of the dorsal tail base of some male salamanders in the genera Desmognathus, Eurycea, and Plethodon in the family Plethodontidae. These glands are believed to deliver pheromones to females during courtship, when the female rests her chin on the dorsal tail base during the stereotypic tail straddling walk unique to plethodontids. Although CCGs have been studied histologically, no investigations of their ultrastructure have been made. This article presents the first study on the fine structure and seasonal variation of CCGs, using the plethodontid Plethodon cinereus. The CCGs vary seasonally in height and secretory activity. The mature secretory granules observed in males collected in October and April consist of oval, biphasic granules that are eosinophilic and give positive reactions to periodic acid‐Schiff for neutral carbohydrates but do not stain for acidic mucosusbtances or proteins with alcian blue and bromphenol blue, respectively. Granular glands, some of which contain mucous demilunes, are twice as large as CCGs, are syncytial (unlike CCGs), and stain for proteins. Mucous glands are similar in size to CCGs, but are basophilic, show no seasonal variation in secretory activity, and stain positive for acidic mucosubstances. CCGs do not resemble cytologically the sexually dimorphic mental glands of some plethodontids, which contain round or oval granules filled with an electron‐dense amorphous substance. The CCGs are similar histologically to sexually dimorphic skin glands described in some anurans, but more comparative work is needed. J. Morphol. 276:319–330, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Lampreys are one of the most primitive vertebrates diverged some 500 million years ago. It has long been known that parasitic lampreys secrete anticoagulant from their buccal glands and prevent blood coagulation of host fishes. We found two major protein components of 160 and 26 kDa in the buccal gland secretion of parasitic river lamprey, Lethenteron japonicum. The larger protein was identified as river lamprey plasma albumin. The complete primary structure of the 26-kDa protein was determined by protein and cDNA analysis. It belonged to the cysteine-rich secretory protein (CRISP) superfamily that includes recently identified reptile venom ion-channel blockers. Lamprey CRISP blocked depolarization-induced contraction of rat-tail arterial smooth muscle, but showed no effect on caffeine-induced contraction. The result suggests that lamprey CRISP is an L-type Ca(2+)-channel blocker and may act as a vasodilator, which facilitates the parasite to feed on the host's blood. The lamprey CRISP protein contains a number of short insertions throughout the sequence, when aligned with reptilian venom CRISP proteins, probably due to the large evolutionary distance between the Agnatha and the Reptilia, and may represent a novel class of venom CRISP family proteins.  相似文献   

11.
The caecilian amphibians are richly endowed with cutaneous glands, which produce secretory materials that facilitate survival in the hostile subterranean environment. Although India has a fairly abundant distribution of caecilians, there are only very few studies on their skin and secretion. In this background, the skin of Ichthyophis beddomei from the Western Ghats of Kerala, India, was subjected to light and electron microscopic analyses. There are two types of dermal glands, mucous and granular. The mucous gland has a lumen, which is packed with a mucous. The mucous-producing cells are located around the lumen. In the granular gland, a lumen is absent; the bloated secretory cells, filling the gland, are densely packed with granules of different sizes which are elegantly revealed in TEM. There is a lining of myo-epithelial cells in the peripheral regions of the glands. Small flat disk-like dermal scales, dense with squamulae, are embedded in pockets in the dermis, distributed among the cutaneous glands. 1–4 scales of various sizes are present in each scale pocket. Scanning electron microscopic observation of the skin surface revealed numerous glandular openings. The skin gland secretions, exuded through the pores, contain fatty acids, alcohols, steroid, hydrocarbons, terpene, aldehyde and a few unknown compounds.  相似文献   

12.
Electrophoretic data for 15 enzymes encoded by 18 loci were analysed in samples of larval lampreys from two southern hemisphere species (Geotria australis and Mordacia mordax). Low values for Nei genetic distance coefficients for all loci in populations of G. australis from Western Australia, Tasmania and New Zealand (0.0013 to 0.0058) suggest that adults may intermix over distances greater than 4000 km. The average heterozygosity for four populations of G. australis (0.086) was much greater than for two populations of the far less widely distributed M. mordax (0.021).  相似文献   

13.
Pholcus phalangioidesdoes not possess receptacular seminis. The uterus externus (genital cavity) itself functions as a sperm storage structure. Two accessory glands are situated in the dorsal part of the uterus externus; they discharge their secretory product into the genital cavity. The secretion is considered to serve primarily as a matrix for sperm storage, i.e. to keep the spermatozoa in a fixed position. The accessory glands consist of numerous glandular units, each being composed of four cells: two secretory cells are always joined and surrounded twice by an inner and an outer envelope cell. Both envelope cells take part in forming a cuticular ductule that leads from the secretory cells to the pore plates of the uterus externus. The inner envelope cell produces the proximal part of the canal close to the microvilli of the secretory cells, whereas the outer envelope cell produces the distal part of the canal leading to the pore plate. Close to the pore the latter exhibits prominent microvilli that might indicate additional secretory activity.  相似文献   

14.
Ultrastructural changes of the parathyroid glands of isoproterenol-treated golden hamsters were investigated. Many chief cells in the parathyroid glands after 5 and 10 minutes of administration of isoproterenol contain well-developed Golgi complexes and granular endoplasmic reticulum, numerous prosecretory granules, and many secretory granules in the peripheral cytoplasm as compared with the control animals. Many chief cells in the parathyroid glands after 1, 3, 6 and 12 hours of administration have poorly-developed Golgi complexes, granular endoplasmic reticulum, many secretory granules and numerous lipid droplets as compared with the control animals. The morphology of the parathyroid gland after 30 minutes and 24 hours of administration resembles that of the control animals. It is considered that isoproterenol affects the secretory activity of the parathyroid gland.  相似文献   

15.
The intestinal contents of adults of 12 of the 18 species of parasitic lampreys were examined microscopically and tested for blood to determine whether a species fed mainly on blood, flesh or blood and flesh. The diets of each species are shown to be related to characteristics of their dentition, buccal glands and velar tentacles. The trends exhibited by those relationships were used to hypothesize as to the diets of those six species for which there were anatomical but not dietary data. The dentition aids the suctorial disc in attaching the lamprey to its host and removing host material, while velar tentacles prevent material entering the branchial cavity and buccal glands produce lamphredin that has anticoagulant and lytic properties. In blood feeders, such as Petromyzon marinus and Mordacia species, the w-shaped transverse lingual lamina and hook-shaped longitudinal laminae bear numerous, fine cusps, which are ideal for rasping a hole in the host. In contrast, in flesh feeders, such as Lampetra fluviatilis and Geotria australis , the transverse lingual lamina is u shaped and the longitudinal laminae are straighter and possess at least one stout cusp, thereby facilitating the removal of host flesh through gouging. The buccal glands are generally larger in blood feeders than flesh feeders, presumably reflecting a need to produce anticoagulant continuously. Each velar tentacle contains a central cartilaginous rod, surrounded by a space which, during feeding, becomes engorged with blood and thus more rigid. They are small (≤1 mm long) and few (2–6) in blood feeders and large (typically ≥2 mm long) and numerous (3–42) in flesh feeders, which, in particular, require a mechanism for preventing solid material entering the branchial pouches and thus potentially clogging the gills. On the basis of recent cladistic analysis, blood feeding is ancestral to flesh feeding in Northern Hemisphere lampreys (Petromyzontidae).  相似文献   

16.
Summary The epididymis of lizards elaborates voluminous secretory granules made of a central core and a peripheral vacuole which in the species Lacerta vivipara contain respectively an insoluble protein (protein H) and a soluble protein (protein L). After their discharge these secretions mix with spermatozoa. In order to detect the presence of carbohydrates in these secretions, lectins isolated from Canavalia ensiformis (con A) and from eleven other plants (lentil, soja, pea, gorse and several mushrooms), conjugated to fluorescein isothiocyanate, have been utilized in light-microscopic histochemical investigations of frozen sections from Lacerta vivipara epididymis. Whereas lectins having affinity for Lfucose, lactose, D-galactose and N-acetyl-D-galactosamine bound to central cores, lectins having affinity to D-glucose, N-acetylglucosamine and chitobiose bound to the peripheral vacuole. D-mannose or D-glucose seem to be present both in central cores and in peripheral vacuoles.  相似文献   

17.
The paired tubular accessory glands in Haemaphysalis longicornis open at the junction of the cervical and the vestibular parts of vagina via short and narrow ducts. The pseudostratified columnar glandular epithelium covered by the muscle layer consists of both secretory and supporting cells. As feeding proceeds, the secretory cells increase in volume. In ovipositing females, well-developed rough endoplasmic reticulum, the Golgi complex, and membranebound granules that are undergoing exocytosis suggest that the secretory cells are involved in protein synthesis. However, in virgin females that fed 10 days, only small dense granules and no secretion activity were observed. The secretions from the tubular accessory gland may be released into the genital tract during the egg passage through the vagina. However, the supporting cells located between the secretory cells become slender during feeding, cohere to each other at the luminal side, and have a very narrow attachment at the basement membrane. Supporting cells probably help maintain secretory cell shape especially during granular discharge into the lumen. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Three distinct groups of unicellular glands open into the buccal cavity, prepharynx, and oesophagus, respectively, of Diclidophora merlangi. Buccal glands produce a dense, acidophilic secretion of protein-rich droplets that are discharged from duct-like extensions of the glands by eccrine secretion. Prepharyngeal glands are extensive and contain basiphilic secretory droplets of varying density and characterized by the presence of one or two dense core-like inclusions. The droplets are PAS-positive and reactive for protein, and accumulate in the gland cell apices which form part of the lining to the prepharynx lumen. They are released in large numbers by apocrine secretion or, individually, by an eccrine secretory mechanism. Oesophageal glands are acidophilic and contain electronlucid, PAS-positive droplets that develop a crystalline appearance prior to release via either eccrine or apocrine secretion. Differences in ultrastructure and histochemistry indicate the glands are also functionally separate, and their probable role in feeding and extracellular digestion of blood in the worm is discussed.  相似文献   

19.
The ultrastructure of the pinealocyte in the woodchuck, Marmota monax, was studied during the four seasons of the year. Fall cells have a fairly uniform cytoplasmic density, organelles consistent with synthetic and/or secretory activity and rather extensive pericapillary and intercellular spaces. Many winter pinealocytes are nearly devoid of ribosomes and granular endoplasmic reticulum but contain lipid droplets associated with mitochondria. Pericapillary and intercellular spaces are minimal. Spring glands have the greatest variation in cytoplasmic density with intercellular and pericapillary spaces similar to that seen in fall glands. Cells containing electron dense cytoplasm have Golgi zone associated, secretory granules, free ribosomes, short sections of granular endoplasmic reticulum and dense bodies. Cells with a more electron lucent cytoplasm are similar to the most frequently observed summer pinealocytes which have numerous Golgi zones but few associated secretory granules. Microtubules are prominent in the cytoplasm of these cells, the plasma membranes are smooth and intercellular and pericapillary spaces are minimal. A yearly rhythm or cyclic activity of the pinealocyte is suggested.  相似文献   

20.
The clitellar epithelium of the freshwater oligochaete, Tubifex hattai, is composed of four types of gland cells (Type I, II, III, and IV), in addition to the cells generally found in the epidermis of this worm. The possible function of these gland cells in cocoon formation was studied with the electron microscope. Type I cells discharge their secretory granules by means of compound exocytosis and provide the materials for the future cocoon membrane. Immediately after completion of the discharge from Type I cells, Type II and III cells simultaneously discharge their secretory granules by means of compound exocytosis. The secretions from Type II cells constitute a colloid in the cocoon lumen and probably cause structural modifications in the future cocoon membrane. The secretory products from Type III cells form the cocoon plug. Although the process of discharge of secretory granules from Type IV cells was not observed, the contribution of these cells to the cocoon formation, producing hoops on the outer surface of the future cocoon membrane and fixing its anterior ends on the clitellum, is inferred from a morphological comparison of the hoop and the structure of the secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号