首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unicellular microalgae generally grow in the presence of bacteria, particularly when they are farmed massively. This study analyzes the bacteria associated with mass culture of Botryococcus braunii: both the planktonic bacteria in the water column and those forming biofilms adhered to the surface of the microalgal cells (∼107–108 culturable cells per gram microalgae). Furthermore, we identified the culturable bacteria forming a biofilm in the microalgal cells by 16S rDNA sequencing. At least eight different culturable species of bacteria were detected in the biofilm and were evaluated for the presence of quorum-sensing signals in these bacteria. Few studies have considered the implications of this phenomenon as regards the interaction between bacteria and microalgae. Production of C4-AHL and C6-AHL were detected in two species, Pseudomonas sp. and Rhizobium sp., which are present in the bacterial biofilm associated with B. braunii. This type of signal was not detected in the planktonic bacteria isolated from the water. We also noted that the bacterium, Rhizobium sp., acted as a probiotic bacterium and significantly encouraged the growth of B. braunii. A direct application of these beneficial bacteria associated with B. braunii could be, to use them like inoculants for large-scale microalgal cultures. They could optimize biomass production by enhancing growth, particularly in this microalga that has a low growth rate.  相似文献   

2.
Specific associations of bacteria with phytoplankton have recently been reported in the literature. In our study, we analyzed bacterial communities of microalgal cultures related to algal growth phases. Seven freshly isolated key diatom and dinoflagellate species from Helgoland Roads, North Sea, were investigated. The community composition of associated bacteria as well as the cell numbers, the photosynthetic efficiency of the algae, and the depletion of inorganic nutrients in the medium were recorded over a period of 8 weeks in batch cultures. Diversity and succession of bacterial communities was analyzed by ribosomal intergenic spacer analysis. Phylogenetic analysis of bacterial populations was performed by denaturing gradient gel electrophoresis of 16S rRNA genes followed by DNA sequence analysis. Members of Alphaproteobacteria and Gammaproteobacteria and the Flavobacteria–Sphingobacteria group within the Bacteroidetes phylum predominated in the cultures. Differences in free-living and attached bacterial populations were observed between the phylogenetic groups. Shifts in the bacterial communities could not be correlated to changes of nutrient levels or algal growth phases. Regarding our results, it should not be generalized that the compositions of the bacterial communities are strictly species specific for microalgae. The importance of factors like the composition of exudates is apparent.  相似文献   

3.
Ultrasound has shown potential for both increasing microalgal lipid extraction yields and for the control of microalgal blooms through cell disruption. The effect of ultrasound on the viability of microalgae was investigated on the following species: Dunaliella salina, Chlamydomonas concordia and Nannochloropsis oculata. Sonication with a 20 kHz probe (0.086 W cm?3) caused complete cell disruption of D. salina after 4 min. This microalgae species does not have a true cell wall. In the case of C. concordia which has a thin cell wall complete cell disruption under the same conditions took 16 min. Under the same conditions, there was no visible disruption of N. oculata, a species which has a thick cell wall. However spectro-fluorophotometer analysis of the sonicated suspension of N. oculata showed that although the cells were intact, the level of intracellular chlorophyll was reduced by ~10 %. This clearly indicated damage to the microalgal cell wall. After 16 min, treatment cultures of all three species remained viable. Programmed cell death (PCD) has been induced in some microalgal species to terminate algal blooms; ultrasonic application did not induce PCD in any species tested. The supernatant of sonicated D. salina and C. concordia has also been shown to be able to boost the growth of established cultures. These results provide important information concerning the uses of ultrasound in both the microalgal biofuels industry and for the control of microalgal blooms.  相似文献   

4.
Molecular identification of microalgal species is vital and involves sequencing of specific markers present in the genome, which are unique to a genus. PCR is a vital tool for identification of microalgae; the preparation of template DNA for PCR by traditional methods requires large amount of algal cells and a time-consuming process. One simple way to reduce these complications is to use the microalgal colonies directly for amplification of required DNA fragments from the genome. In this study, a simple cell-disrupting method, using autoclaved glass powder, has been used for direct colony PCR of microalgae. Four morphologically different microalgal strains were chosen from freshwater samples, and the PCR amplification reaction was evaluated with three different molecular markers (rbcL, internal transcribed spacer 2, and 18S rDNA). PCR amplification was optimized with less number of cells (0.04?×?105), minimal quantity of glass powder (0.5 mg), and in the presence of Milli-Q water for internal transcribed spacer marker. The isolated strains were identified as Desmodesmus sp. JQ782747, Coelastrum proboscideum JQ898144, Chlorella sorokiniana JQ898145, and Scenedesmus sp. JQ782746 based on sequence similarity. This direct microalgal colony PCR proves to be a simple and rapid method for detection of varied microalgal species.  相似文献   

5.
The nutritive quality of Nannochloropsis gaditana cultured semicontinuously with different daily renewal rates was tested as a diet for short-term enrichment of the rotifer Brachionus plicatilis. After 24 h, dramatic differences in the survival, dry weight, and biochemical composition of the rotifers depending on the renewal rate of microalgal cultures were observed. Survival after the feeding period increased with increasing renewal rates. Rotifers fed microalgae from low renewal rate, nutrient-deficient cultures showed low dry weight and organic contents very similar to those of the initial rotifers that were starved for 12 h before the start of the feeding period. On the contrary, rotifers fed nutrient-sufficient microalgal cells underwent up to twofold increases of dry weight and protein, lipid, and carbohydrate contents with regard to rotifers fed nutrient-depleted N. gaditana. Consequently, feed conversion rate decreased in these conditions, indicating a better assimilation of the microalgal biomass obtained at high renewal rates. No single microalgal biochemical parameter among those studied can explain the response of the filter feeder. Similarly to gross composition, EPA and n-3 contents in rotifers fed microalgae from nutrient-sufficient cultures were double than the contents found in rotifers fed nutrient-limited microalgae. In addition, very high positive correlations between the contents of EPA and n-3 in N. gaditana and B. plicatilis were observed. These results demonstrate that selecting the appropriate conditions of semicontinuous culture can strongly enhance the nutritional value of microalgae that is reflected in the growth and biochemical composition of the filter-feeder even in short exposure periods.  相似文献   

6.
The impact of different microalgal semicontinuous cultures on growth and biochemical composition in the next link of the food chain was tested using the filter feeder Artemia species as a model. The marine microalga Tetraselmis suecica was cultured semicontinuously with renewal rates between 10% and 50% and used to feed Artemia. Microalgal cultures maintained with a low renewal rate that had biochemical composition similar to that of the stationary-phase cultures commonly used in aquaculture produced poor growth and survival and low food-conversion efficiency compared to cultures maintained with a high renewal rate. Changes in the renewal rate in microalgal cultures also resulted in important changes in the gross biochemical composition of the filter feeder. The gross biochemical composition of the Artemia resembled that of the microalgae used as food except for total lipid content. The percentage of protein in the organic fraction of Artemia increased from 45% to 65% of the organic weight with increasing renewal rates in the microalgal cultures, while the carbohydrate percentage decreased under the same conditions. Higher renewal rates resulted in higher lipid percentages in the microalga, but in Artemia the percentage of lipids decreased from 19% of the organic weight with a renewal rate of 10%, to 13% with a renewal rate of 50%. The percentage of all polyunsaturated fatty acids in Artemia, including 20:5n-3, increased slightly with increasing renewal rates in the microalgal cultures. Results emphasize the importance of controlling microalgal nutritional value for the success of aquaculture food chains in which filter feeders are involved. Received October 15, 2000; accepted December 29, 2000.  相似文献   

7.
Marine photosynthetic microalgae are ubiquitously associated with bacteria in nature. However, the influence of these bacteria on algal cultures in bioreactors is still largely unknown. In this study, eighteen different bacterial strains were isolated from cultures of Nannochloropsis sp. CCAP211/78 in two outdoor pilot-scale tubular photobioreactors. The majority of isolates was affiliated with the classes Alphaproteobacteria and Flavobacteriia. To assess the impact of the eighteen strains on the growth of Nannochloropsis sp. CCAP211/78, 24-well plates coupled with custom-made LED boxes were used to simultaneously compare replicate axenic microalgal cultures with addition of individual bacterial isolates. Co-culturing of Nannochloropsis sp. CCAP211/78 with these strains demonstrated distinct responses, which shows that the technique we developed is an efficient method for screening the influence of harmful/beneficial bacteria. Two of the tested strains, namely a strain of Maritalea porphyrae (DMSP31) and a Labrenzia aggregata strain (YP26), significantly enhanced microalgal growth with a 14% and 12% increase of the chlorophyll concentration, respectively, whereas flavobacterial strain YP206 greatly inhibited the growth of the microalga with 28% reduction of the chlorophyll concentration. Our study suggests that algal production systems represent a ‘natural’ source to isolate and study microorganisms that can either benefit or harm algal cultures.  相似文献   

8.
Recent developments in the field of microalgal biotechnology, including CO2 biomitigation and the discovery of new species of microalgae that are tolerant to extremely high CO2 levels (40–100 vol%), have renewed interest in the physiological effects and mechanisms of high-CO2 tolerance in photoautotrophs. Photosynthetic apparatus state transitions that increase ATP generation, upregulation of H+-ATPases pumping protons out of the cell, rapid shutdown of CO2-concentrating mechanisms, and adjustment of membranes’ fatty acid composition are currently believed to be the key mechanisms governing cellular pH homeostasis and hence microalgae’s tolerance to high CO2 levels, which is especially characteristic of extremophile and symbiotic species. The mechanisms governing acclimation to high CO2 comprise the subject of this review and are discussed in view of the use of CO2 enrichment to increase the productivity of microalgal cultures, as well as the practice of carbon capture from flue gases.  相似文献   

9.

Microalgae have been a great source for food, cosmetic, pharmacological, and biofuel production. The adoption of effective diagnostic assays for monitoring all stages of algal cultivation has become essential. In addition to microscopy identification, molecular assays can aid greatly in the identification and monitoring of algal species of interest. In this study the 18S ribosomal RNA (rRNA) sequences of 12 microalgal species and/or strains were used to design algal identification primers. Sequence alignment revealed five highly variable regions and multiple unique single nucleotide polymorphisms (SNPs). To design target algae specific primers, a SNP identified as unique to each microalgal species was incorporated into the 3’-terminus of forward and reverse primer pairs, respectively. To further enhance primer specificity, transverse mutation was introduced into each primer at the third base upstream of the respective SNP. The SNP-mismatch primer pairs yield size-specific amplicons, enabling the rapid molecular detection of 12 microalgae by circumventing cloning and sequencing. To verify the primer specificity, two SNP-mismatch primer pairs designed for Chlorella sorokiniana DOE1412 and wildtype species of Scenedesmus were tested in the outdoor reactor run inoculated with C. sorokiniana DOE1412. The primer pairs were able to identify C. sorokiniana DOE1412 as well as the environmental invader Scenedesmus sp. Furthermore, the “relative concentration” of two microalgae was accessed throughout the entire cultivation run. The use of SNPs primers designed in this study offers a cost-effective, easy to use alternative for routine monitoring of microalgal cultures in laboratories, in scale-ups, and in cultivation reactors, independent of the production platform.

  相似文献   

10.
Summary A red microalgal, Rhodosorus marinus, was used to produce phycoerythrin. This autoflocculent species, grown in a vertical tubular photoreactor equipped with a gaz-lift system, achieved a growth rate of 0.029 h-1 with a maximum biomass yield of 2 g.l-1 dry weight. These values were close to those obtained in batch cultures of other red microalgae cultured as free cell suspensions. Results have shown that these algae could be grown efficiently in natural seawater enriched with nutrients and harvested by decantation followed by filtration.  相似文献   

11.
Non-diatom benthic algae from 104 streams in southern California were studied. We present a novel method for quantification of non-diatom algae that seeks to improve upon two important aspects of existing methods: separate processing of macroalgae and microalgae to avoid sample blending and consequent loss of macroalgal integrity, and for better viewing, counting a well-mixed microalgal subsample on a standard microscope slide instead of using a counting chamber. Our method provided high-quality taxonomic and quantitative data with low uncertainty. A total of 260 algal taxa were recorded, 180 of which were identified to species level. The median total algal biovolume per site was 22.7 mm3 cm−2 (range: <0.001–836.9 mm3 cm−2), the median species number was 11 (range: 2–43). Total algal biovolume and species number correlated with canopy cover (negative) and water temperature (positive), but not with measured water chemistry constituents. The proportion of heterocystous cyanobacteria and Zygnemataceae were strongly negatively correlated with nitrate concentrations and TN. The proportion of red algae was negatively correlated with TP. Species optima calculations combined with indicator species analysis identified >40 algal species as potential indicators of nutrient conditions. Proposed here is a practical tool for non-diatom algal quantification that enhances its application to stream bioassessment.  相似文献   

12.
There is continuous interest in many countries in maintaining and manipulating the rich ecological value of hypersaline ecosystems for aquaculture. The Megalon Embolon solar saltworks (northern Greece) were studied in sites of increasing salinity of 60–144 ppt to evaluate Dunaliella salina abundance and microalgal composition, in relation to physical and chemical parameters. Cluster and ordination analyses were performed based on the biotic and abiotic data matrices. Using fresh aliquots from 60 and 140 ppt salinity waters, phytoplankton performance was appraised with flask cultures in the laboratory by varying the inorganic PO4-P concentration at 23 °C and 30 °C. At the saltworks, among the most abundant microalgae identified were species of the genera Dunaliella, Chlamydomonas, Amphora, Navicula, and Nitzschia. Dunaliella salina populations were predominant comprising 5–22% of the total microalgal assemblages during spring, but only 0.3–1.0% during the summer, when grazing by Artemia parthenogenetica and Fabrea salina was intense. D. salina cell density in April–July was in the range of 0.4–12.5 × 106 L−1 with typical densities of 1.5–4.5 × 106 L−1. Overall, microalgal densities were high in salinities of ≥100 ppt when inorganic-P concentrations were ≥0.20 mg L−1 within saltworks waters. Multivariate analysis of species abundance showed that algal growth responses were primarily related to variation in salinity and inorganic-P concentrations, but also to NO3-N concentration. In the laboratory, experiments indicated effective fertilization and denser microalgal growth under high inorganic PO4-P applications (4.0 and 8.0 mg L−1) at 60 ppt salinity and 23 °C. The lower PO4-P applications (0.6–2.0 mg L−1) were more effective at 60 ppt salinity and 30 °C. At 140 ppt salinity, microalgal growth response was less obvious at any of the corresponding phosphorus concentrations or temperatures. In both salinity experiments, Dunaliella salina bloomed easily and was predominant among the microalgae. Our observations indicate that Dunaliella salina populations and the overall rich microalgal profile of the saltworks, along with their performance in laboratory mono–and mixed cultures hold promise for mass cultivation within the M. Embolon saltworks basins.  相似文献   

13.
The aim of the study was to investigate the capacity of microalgae from the extremely low light habitat of bottom ice to acclimate to different light conditions. During austral spring 1997 the bottom layer of land-fast ice in Terra Nova Bay displayed high values of microalgal biomass up to 2,400 μg Chla L−1 concentrated in a few centimetres ice layer. The algal assemblage was dominated by benthic pennate diatoms. Photoacclimation of the microalgae was addressed in terms of pigment spectra and photosynthetic parameters. Immediate and long term (minutes to days) changes in the photoprotective pigments (DD-cycle) were analysed. Severe photodamage occurred in microalgal assemblages exposed to high light. However, part of the bottom ice algal community showed a notable ability to acclimate to high irradiance levels. Changes in photosynthetic parameters preceded the sudden abrupt changes in pigment synthesis and the rapid increase in biomass and growth rates. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

14.
Controlled nitrate feeding strategies for fed-batch cultures of microalgae were applied for the enhancement of lipid production and microalgal growth rates. In particular, in this study, the effect of nitrate feeding rates on lipid and biomass productivities in fed-batch cultures of Nannochloropsis gaditana were investigated using three feeding modes (i.e., pulse, continuous, and staged) and under two light variations on both lipid productivity and fatty acid compositions. Higher nitrate levels negatively affected lipid production in the study. Increasing the light intensity increased the lipid contents of the microalgae in all three fed-batch feeding modes. A maximum of 58.3% lipid- to dry weight ratio was achieved when using pulse-fed cultures at an illumination of 200 μmol photons m−2 s−1 and 10 mg/day of nitrate feeding. This condition also resulted in the maximum lipid productivity of 44.6 mg L−1 day−1. The fatty acid compositions of the lipids consisted predominantly of long-chain fatty acids (C:16 and C:18) and accounted for 70% of the overall fatty acid methyl esters. Pulse feeding mode was found to significantly enhance the biomass and lipid production. The other two feeding modes (continuous and staged) were not ideal for lipid and biomass production. This study demonstrates the applicability of pulse feeding strategies in fed-batch cultures as an appropriate cultivation strategy that can increase both lipid accumulation and biomass production.  相似文献   

15.
Large culture collections of microalgae and cyanobacteria such as the Coimbra Collection of Algae (ACOI) hold unialgal cultures consisting of a population of cells/colonies of a certain species. These cultures are usually non-axenic, as other organisms such as bacteria and microfungi are also present in culture due to co-isolation. Attention has been recently given to partner organisms since studies indicate that some bacteria are important for nutrient uptake of the algal cells, acting as simbionts. Despite this benign effect in the actively growing cultures, when cryopreservation is applied for inactive-stage storage, these organisms may recover faster than the algae, thus affecting their recovery and the viability assessments. In this study, a set of mucilaginous ACOI microalgae were selected, cell features known for their relevance in cryopreservation success were recorded and simple two-step cryopreservation tests were applied. Thawed samples were transferred to fresh culture medium for recovery. Viability was assessed and partner organism proliferation (pop) was recorded. Results were analyzed by t-tests. Statistical models allowed us to support the known tendency for small, unicellular algae with no outer structures to be successfully cryopreserved and the negative effect of vacuoles in the cell prior to cryopreservation. On average cryopreservation with MeOH or Me2SO led to the recovery of nearly half the cells. It was found that the cryoprotection step with MeOH is when pop is triggered and that the use of Me2SO can prevent this effect. Progress on understanding the cultured consortia will assist the improvement of cryopreservation and research using microalgal cultures.  相似文献   

16.
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.  相似文献   

17.
The experiments were conducted on three freshwater microalgal strains, which were grown in the top chambers of retrofitted filter assemblies. The bottom receivers contained control sediments and two types of 14C-labeled, phenanthrene contaminated sediments. The first contaminated sediment had both the reversible and desorption resistant fractions (referred to as partially washed sediment), while the second contaminated sediment had the desorption resistant fraction only (completely washed sediment). A second set of controls was added to isolate the effect of microalgae. Despite minor variations in toxicity, there was no significant difference (P > 0.05) between the growth curves of the three algal strains. From a bioavailability perspective, there was a significant difference (P < 0.05) in desorption rates in chambers containing microalgae. Pooled data from the three cultures indicated that, for assemblies with desorption resistant sediment (completely washed) and microalgae, the top chamber phenanthrene concentrations were approximately 90–100% of the theoretical maximum concentrations. However, filter assemblies without microalgae had only 5–6% of the theoretical maximum. Results also indicated that approximately 91.7–92.4% of the desorbed phenanthrene is directly sequestered by the microalgae in assemblies with the completely washed sediment. These results indicated that the term “desorption-resistant” fraction from a purely physical perspective may not be truly desorption-resistant in presence of microalgae.  相似文献   

18.
The nucleic acid synthesis rates of several marine phytoplankton and bacteria grown in chemostat and batch cultures were measured by using [3H]adenine. The [3H]adenine synthesis rates showed excellent agreement with the known rates of synthesis estimated from chemical RNA and DNA data. Under certain conditions, RNA turnover and ATP pool compartmentalization produce inaccuracies in synthesis measurements made with [3H]adenine. However, accurate measurements of the rates of microbial RNA and DNA synthesis can be made in any environmental situation provided a few simple precautions are observed. First, time course experiments are recommended. Second, experiments should be conducted for periods long enough to avoid problems arising from disequilibria of internal ATP pools. Finally, exogenous [3H]adenine should remain in the medium over the length of the time course.  相似文献   

19.
In short-term experiments using cultures of Chlorella pyrenoidosa, Anabaena flos-aquae, Asterionella formosa, and Navicula pelliculosa, both the proportion of photosynthetic products released from cells and the composition of these products altered, with age. In the first 3 species, percentage extracellular release values increased with increasing growth rates but the reverse trend was shown by Navicula. Fractionation of filtrates using Sephadex indicated that, in general, larger molecular weight compounds became predominant as cultures aged. Also a time-dependent shift in a similar direction occurred in cultures of all ages. In several lakes a predominance of large molecular weight compounds was apparent in filtrates even from short-term experiments. Filtrates of mixed cultures of planktonic bacteria growing on 14C glycolate were found to contain, large molecular weight organic compounds. It was demonstrated that in nonaxenic cultures of algae and in lake water, bacteria utilize low molecular weight extracellular metabolites of algal origin and larger molecular weight compounds are formed.  相似文献   

20.
Tris (Tris(hydroxymethyl)amino methane), a compound often used as a buffer in microalgal culture media, sustains active bacterial growth in non-axenic microalgal cultures when sodium phosphate is present. The low pH levels caused by bacterial growth and probably the depletion of phosphorus in the medium caused the collapse ofPhaeodactylum tricornutum cultures resulting in a reduction of microalgal growth from 32 x 106 to 1.1 x 106 cells ml–1. This emphasizes the need for care when interpreting the results of non-axenic microalgae cultures in which Tris or other organic buffer is added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号