首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of mononuclear cells to inhibit plaque formation of varicella-zoster virus (VZV) was investigated by an in vitro infectious center assay. Peripheral blood mononuclear cells (PBMC) inhibited VZV plaque formation by co-cultivation with VZV-infected fibroblasts. As compared to mononuclear cells from normal individuals, mononuclear cells from umbilical cord blood and from patients receiving corticosteroids showed a significant decrease in the ability to inhibit viral replication. This ability was significantly increased for mononuclear cells collected during the acute phase of varicella. PBMC obtained from patients in the acute phase of varicella produced significantly higher amounts of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-12 in the supernatant compared with those of healthy individuals. These data suggest that the cytokines have an important role in the inhibition of the spread of VZV at an early stage of varicella. Th1 type adaptive immunity might play a major role in VZV infection.  相似文献   

2.
The expression of ICAM-1 (CD54), β1 integrin (CD29), and CD44 on cytomegalovirus (CMV)-infected human embryonic fibroblasts (HEF) was analyzed by flow cytometry. The expression of these adhesion molecules increased significantly on CMV-infected HEF, on days 2 and 5 after inoculation, compared to uninfected HEF. However, the expression of these adhesion molecules decreased on herpes simplex virus (HSV)-1 and varicella-zoster virus (VZV)-infected HEF. Increased expression was not observed on HEF treated either with inactivated CMV or with supernatant fluid of CMV-infected cells. The addition of anti-cytokine (TNF-α, IL-1β, or IFN-γ) antibodies had no effect on the increase of these adhesion molecules. This suggests that the increase in CD54, CD29, and CD44 on CMV-infected cells requires active virus replication and was not mediated by a soluble factor released from CMV-infected cells. Changes in adhesion molecules on CMV-infected fibroblasts may contribute to inflammation induced by CMV infection.  相似文献   

3.
Several systemic autoimmune diseases display a prominent IFN signature. This is caused by a continuous IFN-α production by plasmacytoid dendritic cells (pDCs), which are activated by immune complexes (ICs) containing nucleic acid. The IFN-α production by pDCs stimulated with RNA-containing IC (RNA-IC) consisting of anti-RNP autoantibodies and U1 small nuclear ribonucleoprotein particles was recently shown to be inhibited by monocytes, but enhanced by NK cells. The inhibitory effect of monocytes was mediated by TNF-α, PGE(2), and reactive oxygen species, but the mechanisms for the NK cell-mediated increase in IFN-α production remained unclear. In this study, we investigated the mechanisms whereby NK cells increase the RNA-IC-induced IFN-α production by pDCs. Furthermore, NK cells from patients with systemic lupus erythematosus (SLE) were evaluated for their capacity to promote IFN-α production. We found that CD56(dim) NK cells could increase IFN-α production >1000-fold after RNA-IC activation, whereas CD56(bright) NK cells required costimulation by IL-12 and IL-18 to promote IFN-α production. NK cells produced MIP-1α, MIP-1β, RANTES, IFN-γ, and TNF-α via RNA-IC-mediated FcγRIIIA activation. The IFN-α production in pDCs was promoted by NK cells via MIP-1β secretion and LFA-mediated cell-cell contact. Moreover, NK cells from SLE patients displayed a reduced capacity to promote the RNA-IC-induced IFN-α production, which could be restored by exogenous IL-12 and IL-18. Thus, different molecular mechanisms can mediate the NK cell-dependent increase in IFN-α production by RNA-IC-stimulated pDCs, and our study suggests that the possibility to therapeutically target the NK-pDC axis in IFN-α-driven autoimmune diseases such as SLE should be investigated.  相似文献   

4.
Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.  相似文献   

5.
We sought to examine the effects of varicella-zoster virus (VZV) infection on the expression of major histocompatibility complex class I (MHC I) molecules by human fibroblasts and T lymphocytes. By flow cytometry, VZV infection reduced the cell surface expression of MHC I molecules on fibroblasts significantly, yet the expression of transferrin receptor was not affected. Importantly, when human fetal thymus/liver implants in SCID-hu mice were inoculated with VZV, cell surface MHC I expression was downregulated specifically on VZV-infected human CD3+ T lymphocytes, a prominent target that sustains VZV viremia. The stage in the MHC I assembly process that was disrupted by VZV in fibroblasts was examined in pulse-chase and immunoprecipitation experiments in the presence of endoglycosidase H. MHC I complexes continued to be assembled in VZV-infected cells and were not retained in the endoplasmic reticulum. In contrast, immunofluorescence and confocal microscopy showed that VZV infection resulted in an accumulation of MHC I molecules which colocalized to the Golgi compartment. Inhibition of late viral gene expression by treatment of infected fibroblasts with phosphonoacetic acid did not influence the modulation of MHC I expression, nor did transfection of cells with plasmids expressing immediate early viral proteins. However, cells transfected with a plasmid carrying the early gene ORF66 did result in a significant downregulation of MHC I expression, suggesting that this gene encodes a protein with an immunomodulatory function. Thus, VZV downregulates MHC I expression by impairing the transport of MHC I molecules from the Golgi compartment to the cell surface; this effect may enable the virus to evade CD8+ T-cell immune recognition during VZV pathogenesis, including the critical phase of T-lymphocyte-associated viremia.  相似文献   

6.
7.
We show here that the varicella-zoster virus (VZV) open reading frame 66 (ORF66) protein kinase is one mechanism employed to reduce class I major histocompatibility complex (MHC-I) surface expression in VZV-infected cells. Cells expressing enhanced green fluorescent protein-tagged functional and inactivated ORF66 (GFP-66 and GFP-66kd) from replication-defective adenovirus vectors revealed that ORF66 reduced MHC-I surface levels in a manner dependent on kinase activity. Cells infected with recombinant VZV expressing GFP-66 exhibited a significantly greater reduction in MHC-I surface expression than that observed in cells infected with VZV disrupted in GFP-66 expression. MHC-I maturation was delayed in its transport from the endoplasmic reticulum through the Golgi in both adenovirus-transduced cells expressing only GFP-66 and in VZV-infected cells expressing high levels of GFP-66, and this was predominantly kinase dependent. MHC-I levels were reduced in VZV-infected cells, and analyses of intracellular MHC-I revealed accumulation of folded MHC-I in the Golgi region, irrespective of ORF66 expression. Thus, the ORF66 kinase is important for VZV-mediated MHC-I downregulation, but additional mechanisms also may be involved. Analyses of the VZV ORF9a protein, the ortholog of the bovine herpesvirus 1 transporter associated with antigen processing inhibitor UL49.5 revealed no effects on MHC-I. These results establish a new role for viral protein kinases in immune evasion and suggest that VZV utilizes unique mechanisms to inhibit antigen presentation.  相似文献   

8.
The aims of this study are to examine the effect of sphingosine 1-phosphate (S1P) on IL-2-activated natural killer (NK) cell lysis of K562 tumor cells and immature dendritic cells (iDCs), and to investigate the mechanisms involved in S1P activity. Our results show that S1P protected K562 cells or iDCs from NK cell lysis, which was reversed by FTY720 and SEW2871, the antagonists of S1P1. S1P did not modulate the expression of NKG2D, NKp30, NKp44 or CD158 on the surface of NK cells, and neither affected the expression of CD80, CD83, or CD86 on the surface of DCs. In contrast, it increased the expression of HLA-I and HLA-E on DCs, an activity that was inhibited by FTY720 or SEW2871. Similarly, the inhibitory effect of S1P for NK cell lysis of K562 cells was directed toward S1P1 expressed on the tumor cells but not on NK cells. Further analysis indicates that NK cells secreted various cytokines and chemokines with various intensities: (1) low (IL-4, IL-6, IL-12, TNF-α and MCP-1); (2) intermediate (IL-1β, IL-10, TGF-β1, and IL-17A); (3) high (IFN-γ, and MIP-1α); and (4) very high (MIP-1β). S1P significantly reduced the release of IL-17A and IFN-γ from NK cells, but this inhibition was S1P1-independent. These results indicate that S1P is an anti-inflammatory molecule, and that S1P1 is important for the interaction among NK cells and tumor cells or DCs leading to up-regulation of HLA-I and HLA-E on the surface of DCs, but not in S1P inhibition of the release of inflammatory cytokines from NK cells. Further, the results suggest that FTY720 and SEW2871 may potentially be used as prophylactic and/or therapeutic drugs to treat cancer patients.  相似文献   

9.
目的:构建双表达逆转录病毒载体pLXPXSN—TCRα12—2-IRES—Vβ7.1,包装成病毒颗粒后有效地感染PBMC。方法:以实验室保存舍TCRVβ7.1基因和TCRα12.2基因的质粒为模板,分别扩增得到两个基因,亚克隆入载体pLXPXSN,得到重组质粒pLXPXSN—TCRα12—2.IRES—Vβ7.1。重组体质粒经酶切鉴定后,将鉴定好的阳性重组质粒用脂质体介导转染PA317细胞,包装成完整的病毒后测定滴度,感染PBMC,用流式细胞仪和提取基因组DNA检测目的蛋白的表达。最后病毒感染PBMC,用流式细胞仪检测目的蛋白的表达。然后用流式细胞术细胞凋亡率,MTT比色法检测pLXPXSN—TCRα12—2-IRES-Vβ7.1感染的PBMC对肝癌细胞BEL-7402和HEPG2的杀伤作用。结果:从重组病毒基因组中扩增出目的基因TCRα12.2和TCRVβ7.1,流式细胞仪检测表明目的基因可以在PBMC中有效的表达。pLXPXSN—TCRα12—2-IRES—Vβ7.1感染PBMC组对肿瘤细胞的杀伤率明显高于PBMC组和空载体感染组。结论:TCRα12.2和TCRVβ7.1能够整合进宿主PBMC的基因组中,并能得到有效地表达。pLXPXSN—TCRα12—2-IRES-Vβ7.1感染PBMC后可提高其对肝癌细胞的杀伤活性。  相似文献   

10.
The expression and subcellular localization of cellular heat-shock protein hsp70 were examined in varicella-zoster virus (VZV)-infected human diploid fibroblasts. Infection with VZV elevated the steady-state levels of hsp70 mRNA by 24 hr post-infection (hpi). Western blotting analysis revealed an increase in accumulation of hsp70 from 24 hpi. Subcellular localization of the hsp70 in VZV-infected cells was examined by indirect immunofluorescence. In most VZV-infected cells, hsp70 was localized to inclusion bodies induced in the cell nucleus by infection with VZV. In some cells, however, the remaining parts of the cell nucleus and the cytoplasm were also stained with anti-hsp70 antibody. These results indicate that infection with VZV induces the expression of hsp70 and its localization to VZV-specific inclusion bodies, which suggests the involvement of hsp70 in molecular events within inclusion bodies.  相似文献   

11.
Dendritic cells (DC) are antigen-presenting cells essential for initiating primary immune responses and therefore an ideal target for viral immune evasion. Varicella-zoster virus (VZV) can productively infect immature human DCs and impair their function as immune effectors by inhibiting their maturation, as evidenced by the expression modulation of functionally important cell surface immune molecules CD80, CD86, CD83, and major histocompatibility complex I. The NF-κB pathway largely regulates the expression of these immune molecules, and therefore we sought to determine whether VZV infection of DCs modulates the NF-κB pathway. Nuclear localization of NF-κB p50 and p65 indicates pathway activation; however, immunofluorescence studies revealed cytoplasmic retention of these NF-κB subunits in VZV-infected DCs. Western blotting revealed phosphorylation of the inhibitor of κBα (IκBα) in VZV-infected DCs, indicating that the pathway is active at this point. We conclude that VZV infection of DC inhibits the NF-κB pathway following protein phosphorylation but before the translocation of NF-κB subunits into the nucleus. An NF-κB reporter assay identified VZV open reading frame 61 (ORF61) as an inhibitor of tumor necrosis factor alpha-induced NF-κB reporter activity. Mutational analysis of ORF61 identified the E3 ubiquitin ligase domain as a region required for NF-κB pathway inhibition. In summary, we provide evidence that VZV inhibits the NF-κB signaling pathway in human DCs and that the E3 ubiquitin ligase domain of ORF61 is required to modulate this pathway. Thus, this work identifies a mechanism by which VZV modulates host immune function.  相似文献   

12.
Combinatory responses of proinflamamtory cytokines have been examined on the nitric oxide-mediated function in cultured mouse calvarial osteoblasts. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced iNOS gene expression and NO production, although these actions were inhibited by L-NG-monomethylarginine (L-NMMA) and decreased alkaline phosphatase (ALPase) activity. Furthermore, NO donors, sodium nitroprusside (SNP) and NONOate dose-dependently elevated ALPase activity. In contrast, transforming-growth factor-β (TGF-β) decreased NO production stimulated by IL-1β, TNF-α and interferon-γ (IFN-γ). iNOS was expressed by mouse calvarial osteoblast cells after stimulation with IL-1β, TNF-α, and IFN-γ. Incubation of mouse calvarial osteoblast cells with the cytokines inhibited growth and ALPase activity. However, TGF-β-treatment abolished these effects of IL-1β, TNF-α and IFN-γ on growth inhibition and stimulation of ALPase in mouse calvarial osteoblast cells. In contrast, IL-1β, TNF-α, and IFN-γ exerted growth-inhibiting effects on mouse calvarial osteoblast cells which were partly NO-dependent. The results suggest that NO may act predominantly as a modulator of cytokine-induced effects on mouse calvarial osteoblast cells and TGF-β is a negative regulator of the NO production stimulated by IL-1β, TNF-α and IFN-γ.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous cytokine that induces apoptosis in malignant tumor cells. Here, we show for the first time that lactobacilli induce TRAIL production in human peripheral blood mononuclear cells (PBMC). Treatment with lactobacilli induced TRAIL on the cell surface of PBMC and in culture medium. The TRAIL production induced by lactobacilli partially depends on IFN-α and IFN-γ. Lactobacilli treatment facilitated NK activity of PBMC against prostate cancer cells. Moreover, TRAIL neutralization antibody efficiently prevented the NK activity. Our results indicate that lactobacilli facilitate NK activity through TRAIL production, and raise the possibility of a new TRAIL-based strategy against malignant tumors.  相似文献   

14.
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

15.
Tumor necrosis factor-α (TNF-α) is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-α-converting enzyme (TACE/ADAM17) is the major sheddase for ectodomain shedding of TNF-α. At present, however, it is poorly understood how its catalytic activity is regulated. Here, we show that nardilysin (N-arginine dibasic convertase; NRDc) enhanced TNF-α shedding. In a cell-based shedding assay, expression of NRDc synergistically enhanced TACE-induced TNF-α shedding. A peptide cleavage assay in vitro showed that recombinant NRDc enhances the cleavage of TNF-α induced by TACE. Notably, co-incubation of NRDc completely reversed the inhibitory effect of a physiological concentration of salt on TACE’s activity in vitro. Overexpression of NRDc in TACE-deficient fibroblasts resulted in an increase in the amount of TNF-α released. Co-expression of NRDc with ADAM10 promoted the release compared with the sole expression of ADAM10. These results suggested that NRDc enhances TNF-α shedding through activation of not only TACE but ADAM10. Our results indicate the involvement of NRDc in ectodomain shedding of TNF-α, which may be a novel target for anti-inflammatory therapies.  相似文献   

16.
《Cryobiology》2009,58(3):201-208
Cryopreserved peripheral blood mononuclear cells (PBMC) are commonly used when assessing immune responses in clinical trials, both for practical reasons and to minimize interassay variation, as samples are often collected and studied over time. This study investigated the effect of cryopreservation on cytokine and chemokine secretion, and on expression of regulatory T-cell associated markers, in samples from children with type 1 diabetes. PBMC were cultured before and after cryopreservation either with GAD65 or PHA. Secretion of cytokines (IL-5, -6, -10, -12, -13 -17, IFN-γ and TNF-α) and chemokines (IP-10, MCP-1, MIP-1α, MIP-1β and RANTES) was analysed in cell supernatants using multiplex fluorochrome technique (Luminex). Expression of FOXP3 and TGF-β mRNA was detected by multiplex real-time RT-PCR. Increased spontaneous secretion of IL-6, -10, -12, -13, IFN-γ and MCP-1, and mRNA expression of FOXP3 and TGF-β, was detected after cryopreservation. Stimulation with GAD65 induced higher levels of IL-6, IFN-γ, TNF-α and MIP-1α, whereas lower secretion was found for IL-10 and IL-13 in cryopreserved PBMC. Stimulation with PHA induced lower secretion of IP-10, MCP-1 and RANTES and FOXP3 mRNA expression after cryopreservation. Thus, cryopreserved PBMC were suitable to assess the immunological markers included in this study, even though their expression could differ from freshly handled cells.  相似文献   

17.
During primary varicella-zoster virus (VZV) infection, it is presumed that virus is transmitted from mucosal sites to regional lymph nodes, where T cells become infected. The cell type responsible for VZV transport from the mucosa to the lymph nodes has not been defined. In this study, we assessed the susceptibility of human monocyte-derived dendritic cells to infection with VZV. Dendritic cells were inoculated with the VZV strain Schenke and assessed by flow cytometry for VZV and dendritic cell (CD1a) antigen expression. In five replicate experiments, 34.4% +/- 6.6% (mean +/- SEM) of CD1a(+) cells were also VZV antigen positive. Dendritic cells were also shown to be susceptible to VZV infection by the detection of immediate-early (IE62), early (ORF29), and late (gC) gene products in CD1a(+) dendritic cells. Infectious virus was recovered from infected dendritic cells, and cell-to-cell contact was required for transmission of virus to permissive fibroblasts. VZV-infected dendritic cells showed no significant decrease in cell viability or evidence of apoptosis and did not exhibit altered cell surface levels of major histocompatibility complex (MHC) class I, MHC class II, CD86, CD40, or CD1a. Significantly, when autologous T lymphocytes were incubated with VZV-infected dendritic cells, VZV antigens were readily detected in CD3(+) T lymphocytes and infectious virus was recovered from these cells. These data provide the first evidence that dendritic cells are permissive to VZV and that dendritic cell infection can lead to transmission of virus to T lymphocytes. These findings have implications for our understanding of how virus may be disseminated during primary VZV infection.  相似文献   

18.
Noninfected and varicella-zoster virus (VZV)-infected human foreskin fibroblasts were examined for thymidine kinase activity. The specific activity of VZV-infected cell extracts was approximately 7.5-fold greater than that of mock-infected cells and 3-fold greater than that of actively growing cells. The pH optimum of VZV-infected cell thymidine kinase activity was found to be 8.0, whereas thymidine kinase activity in noninfected cells exhibited a sharp pH optimum at 7.4. Electrophoretic analysis of cellular enzymes involved in pyrimidine nucleoside phosphorylation revealed at least three enzymes distinguishable by electrophoretic mobility and substrates used. These enzymes were presumed to be thymidine kinase, deoxycytidine kinase, and uridine kinase. The relative mobilities of these enzymes on 5% polyacrylamide gels were 0.18, 0.91, and 0.54, respectively. In VZV-infected cells, a single band of activity catalyzing the phosphorylation of thymidine, deoxyuridine, deoxycytidine, and cytidine was observed with a relative mobility of 0.48. Cellular pyrimidine-phosphorylating enzymes were not detected in VZV-infected cells. The molecular weight of the VZV-induced enzyme was determined to be 72,000 +/- 7%.  相似文献   

19.
Mice deficient in thyroid hormone receptor α (TRα) display hypersensitivity to thyroid hormone (TH), with normal serum TSH but diminished serum T(4). Our aim was to determine whether altered TH metabolism played a role in this hypersensitivity. TRα knockout (KO) mice have lower levels of rT(3), and lower rT(3)/T(4) ratios compared with wild-type (WT) mice. These alterations could be due to increased type 1 deiodinase (D1) or decreased type 3 deiodinase (D3). No differences in D1 mRNA expression and enzymatic activity were found between WT and TRαKO mice. We observed that T(3) treatment increased D3 mRNA in mouse embryonic fibroblasts obtained from WT or TRβKO mice, but not in those from TRαKO mice. T(3) stimulated the promoter activity of 1.5 kb 5'-flanking region of the human (h) DIO3 promoter in GH3 cells after cotransfection with hTRα but not with hTRβ. Moreover, treatment of GH3 cells with T(3) increased D3 mRNA after overexpression of TRα. The region necessary for the T(3)-TRα stimulation of the hD3 promoter (region -1200 to -1369) was identified by transfection studies in Neuro2A cells that stably overexpress either TRα or TRβ. These results indicate that TRα mediates the up-regulation of D3 by TH in vitro. TRαKO mice display impairment in the regulation of D3 by TH in both brain and pituitary and have reduced clearance rate of TH as a consequence of D3 deregulation. We conclude that the absence of TRα results in decreased clearance of TH by D3 and contributes to the TH hypersensitivity.  相似文献   

20.
A new method for detection of varicella-zoster virus (VZV) DNA using field-inversion gel electrophoresis (FIGE) was devised. VZV-genomic DNA could be differentiated from the host cell DNA of human embryonic lung (HEL) fibroblasts infected with VZV under electrophoretic conditions allowing resolution of linear and double-stranded DNAs in the 49-230 kilobase pairs (Kb) range. The detection of VZV-genomic DNA from infected HEL cells was successful regardless of whether the VZV was a laboratory strain, live vaccine strain, or fresh isolate. Under the same electrophoretic conditions, DNA of VZV-infected HEL cells could be clearly differentiated from DNA obtained from HEL cells infected with herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), or human cytomegalovirus (HCMV). Furthermore, VZV genomic DNA could be detected from as small a sample as 1.9 x 10(4) VZV-infected HEL cells. Finally, we could detect VZV genomic DNA from 10 samples of vesicle tissue (blister lids, each about 1-4 mm2) and one sample of vesicle fluid (about 5 microliters) obtained from patients diagnosed as having herpes-zoster. The results of this study indicate that FIGE is a simple and promising method for the detection of VZV from clinical materials as well as infected in vitro cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号