首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Photoinhibition of PSII and turnover of the D1 reaction-centre protein in vivo were studied in pumpkin leaves (Cucurbita pepo L.) acclimated to different growth irradiances and in low-light-grown moss, (Ceratodon purpureus) (Hedw.) Brid. The low-light-acclimated pumpkins were most susceptible to photoinhibition. The production rate of photoinhibited PSII centres (kPI), determined in the presence of a chloroplast-encoded protein-synthesis inhibitor, showed no marked difference between the high- and low-light-grown pumpkin leaves. On the other hand, the rate constant for the repair cycle (kREC) of PSII was nearly three times higher in the high-light-grown pumpkin when compared to low-light-grown pumpkin. The slower degradation rate of the damaged D1 protein in the low-light-acclimated leaves, determined by pulsechase experiments with [35S]methionine suggested that the degradation of the Dl protein retards the repair cycle of PSII under photoinhibitory light. Slow degradation of the D1 protein in low-light-grown pumpkin was accompanied by accumulation of a phosphorylated form of the D1 protein, which we postulate as being involved in the regulation of D1-protein degradation and therefore the whole PSII repair cycle. In spite of low growth irradiance the repair cycle of PSII in the moss Ceratodon was rapid under high irradiance. When compared to the high- or low-light-acclimated pumpkin leaves, Ceratodon had the highest rate of D1-protein degradation at 1000 mol photons m–2 s–1. In contrast to the higher plants, the D1 protein of Ceratodon was not phosphorylated either under high irradiance in vivo or under in-vitro conditions, which readily phosphorylate the D1 protein of higher plants. This is consistent with the rapid degradation of the D1 protein in Ceratodon. Screening experiments indicated that D1 protein can be phosphorylated in the thylakoid membranes of angiosperms and conifers but not in lower plants. The postulated regulation mechanism of D1-protein degradation involving phosphorylation and the role of thylakoid organization in the function of PSII repair cycle are discussed.Abbreviations Chl Chlorophyll - D1* phosphorylated form of D1 protein - Fmax and Fv maximal and variable fluorescence respectively - kPJ and kREC rate constants of photoinhibition and concurrent recovery respectively - LHCII lightharvesting chlorophyll a/bprotein of PSII - PFD photon flux density Dr. R. Barbato (Dipartimento di Biologia, Universita di Padova, Padova, Italy), Prof. P. Böger (Lehrstuhl fur Physiologie und Biochemie der Pflanzen, Universität Konstanz, Konstanz, Germany), Prof. A. Melis (Department of Plant Biology, University of California, Berkeley, USA), Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) and Mr. A. Soitamo (Department of Biology, University of Turku, Turku, Finland) are gratefully acknowledged for the D1-protein-specific antibodies. The authors thank Ms. Virpi Paakkarinen for excellent technical assistance. This work was supported by the Academy of Finland and the Foundation of the University of Turku.  相似文献   

2.
The extrinsic photosystem II (PSII) protein of 33 kDa (PsbO), which stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isoforms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were retarded in growth in comparison with the wild type, while differing from each other phenotypically. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to reduced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the mutant lacking PsbO1. During a short period of treatment of detached leaves or isolated thylakoids at high light levels, inactivation of PSII electron transport in the PsbO2-deficient mutant was slowed down, and the subsequent degradation of the D1 protein was totally inhibited. The steady-state levels of in vivo phosphorylation of the PSII reaction centre proteins D1 and D2 were specifically reduced in the mutant containing only PsbO2, in comparison with the mutant containing only PsbO1 or with wild-type plants. Phosphorylation of PSII proteins in vitro proceeded similarly in thylakoid membranes from both mutants and wild-type plants. However, dephosphorylation of the D1 protein occurred much faster in the thylakoids containing only PsbO2. We conclude that the function of PsbO1 in Arabidopsis is mostly in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover of the D1 protein, increasing its accessibility to the phosphatases and proteases involved in its degradation.  相似文献   

3.
Development of chlorosis and loss of PSII were compared in young spinach plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll could be detected already after the first week of deficiency and preceded any permanent functional inhibition of PSII as detected by changes in the chlorophyll fluorescence parameter Fv/Fm. A substantial decrease in Fv/Fm was observed only after the second week of deficiency. After 4 weeks, the plants had lost about 70% of their original chlorophyll content, but fluorescence data indicated that 80% of the existing PSII centers were still capable of initiating photosynthetic electron transport. The degradation of the photosynthetic apparatus without loss of PSII activity was due to changes in protein turnover, especially of the PSII D1 reaction center protein. Already by day 7 of deficiency, a 1.4-fold increase in D1 protein synthesis was observed measured as incorporation of 14C-leucine. Immunological determination by western-blotting did not reveal a change in D1 protein content. Thus, D1 protein was also degraded more rapidly. The increased turnover was high enough to prevent any loss or inhibition of PSII. After 3 weeks, D1 protein synthesis on a chlorophyll basis was further increased by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%. Immunological determination revealed that together with the D1 protein also other polypeptides of PSII became degraded. This process prevented a large accumulation of photo-inactivated PSII centers. However, it initiated the breakdown of the other thylakoid proteins, especially of LHCII, resulting in the observed chlorosis. Together with the change in protein turnover and stability, a characteristic change in thylakoid protein phosphorylation was observed. In the deficient plants steady state phosphorylation of both LHCII and PSII proteins was increased in the dark. In the light phosphorylation of PSII proteins was stimulated and after 3 weeks of deficiency was even higher in the deficient leaves than in the control plants. In contrast, the phosphorylation level of LHCII decreased in the light and could hardly be detected after 3 weeks of deficiency. Phosphorylation of the reaction center polypeptides presumably increased their stability against proteolytic attack, whereas phosphorylated LHCII seems to be the substrate for proteolysis.  相似文献   

4.
Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb2+ stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.  相似文献   

5.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

6.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

7.
Recent work has shown that the light-induced PS II core protein degradation, as monitored by immunostain reduction on Western blots, was stimulated even at low light during phosphorylation of thylakoid proteins in the presence of NaF, and that the thylakoid kinase inhibitor FSBA blocked completely the light- and ATP-stimulated degradation [Georgakopoulos and Argyroudi-Akoyunoglou (1997) Photosynth Res 53: 185–195]. To assess whether D1, D2 or both proteins are degraded, antibodies raised against D1/D2, or the D-E loop of D1 were used. Greatest immunostain reduction was observed with antibodies raised against D1/D2, immunostaining a 34 kDa protein on blots of 15% polyacrylamide-6 M urea gels, suggesting that the phosphorylation-induced degradation may be mainly directed against D2. To see how protein phosphorylation might be implicated in PS II core protein degradation we further tested the effect of free radical scavengers, on thylakoid protein phosphorylation. Active oxygen scavengers like n-propyl gallate, histidine, and imidazole, shown earlier to inhibit high light-induced D1 degradation, also suppressed the phosphorylation of thylakoid proteins; on the other hand, NaN3 and D-mannitol, known to stimulate light- induced D1 degradation did not suppress protein phosphorylation, whereas superoxide dismutase and catalase, known also to inhibit high light-induced D1 degradation, did not affect thylakoid protein phosphorylation. In addition, the ATP-induced degradation was also observed in the dark under conditions of kinase activation, and in the light under anaerobic conditions, that block light-induced degradation, whereas it was reduced in the absence of NaF, the phosphatase inhibitor. The results point to the involvement of a proteolytic system in PS II core protein degradation, which is active in its phosphorylated state.  相似文献   

8.
AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn4–Ca cluster even with high turnover of PSII.  相似文献   

9.
Photosystem II (PSII) is vulnerable to high light (HL) illumination resulting in photoinhibition. In addition to photoprotection mechanisms, plants have developed an efficient PSII repair mechanism to save themselves from irreversible damage to PSII under abiotic stresses including HL illumination. The phosphorylation/dephosphorylation cycle along with subsequent degradation of photodamaged D1 protein to be replaced by the insertion of a newly synthesized copy of D1 into the PSII complex, is the core function of the PSII repair cycle. The exact mechanism of this process is still under discussion. We describe the recent progress in identifying the kinases, phosphatases and proteases, and in understanding their involvement in the maintenance of thylakoid structure and the quality control of proteins by PSII repair cycle during photoinhibition.  相似文献   

10.
Kato Y  Sun X  Zhang L  Sakamoto W 《Plant physiology》2012,159(4):1428-1439
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.  相似文献   

11.

Background

Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress.

Scope

Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis.

Conclusions

Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these ‘assembly’ factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.  相似文献   

12.
In plants external stimuli are perceived through a cascade of signals and signal transduction pathways. Protein phosphorylation and de-phosphorylation is one of the most important transduction paths for the perception of signals in plants. The highest concentrations of plant phospho-proteins are located in chloroplasts. This facilitates the protection of thylakoid membranes from stress-induced damage and augments adaptive strategies in plants. In this review, the protein kinases associated with phosphorylation of thylakoid membrane protein, and the adaptive changes in thylakoid membrane architecture and developmental cues are given. The presence of membrane bound kinases in thylakoid membranes have evolutionary implications for the signal transduction pathways and the photosynthetic gene expression for thylakoid membrane protein dynamics. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.  相似文献   

14.
In C4 plants, such as maize, the photosynthetic apparatus is partitioned over two cell types called mesophyll (M) and bundle sheath (BS), which have different structure and specialization of the photosynthetic thylakoid membranes. We characterized protein phosphorylation in thylakoids of the two cell types from maize grown under either low or high light. Western blotting with phosphothreonine antibodies and ProQ phosphostaining detected light-dependent changes in the protein phosphorylation patterns. LC-MS/MS with alternating CID and electron transfer dissociation sequencing of peptide ions mapped 15 protein phosphorylation sites. Phosphorylated D2, CP29, CP26, Lhcb2 proteins, and ATPsynthase were found only in M membranes. A previously unknown phosphorylation site was mapped in phosphoenolpyruvate carboxykinase from the BS cells. Phosphorylation stoichiometry was calculated from the ratios of normalized ion currents for phosphorylated to nonphosphorylated peptide pairs from the D1, D2, CP43, and PbsH proteins of photosystem II (PSII). Every PSII in M thylakoids contained on average 1.5 ± 0.1 or 2.3 ± 0.2 phosphoryl groups in plants grown under either low or high light, while in BS membranes the corresponding numbers were 0.25 ± 0.1 or 0.7 ± 0.2, respectively. It is suggested that the phosphorylation level, as well as turnover of PSII depend on the structure of thylakoids.  相似文献   

15.
The effects of drought on chlorophyll fluorescence characteristics of PSII, photosynthetic pigments, thylakoid membrane protein (D1), and proline content in different varieties of mung bean plants were studied. Drought stress inhibits PSII activity and induces alterations in D1 protein. We observed a greater decline in the effective quantum yield of PSII, electron transport rate, and saturating photosynthetically active photon flux density (PPFDsat) under drought stress in var. Anand than var. K-851 and var. RMG 268. This may possibly be due to either downregulation of photosynthesis or photoinhibition process. Withholding irrigation resulted in gradual diminution in total Chl content at Day 4 of stress. HPLC analysis revealed that the quantity of β-carotene in stressed plants was always higher reaching maxima at Day 4. Photoinactivation of PSII in var. Anand includes the loss of the D1 protein, probably from greater photosynthetic damage caused by drought stress than the other two varieties.  相似文献   

16.
Lead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream. The photochemical efficiency of PSII, measured as an Fv/Fm ratio, in the maize leaves treated with Pb was only 10% lower than in control leaves. The PSII activity was not affected by Pb ions in mesophyll thylakoids, whereas in bundle sheath it was reduced. Protein phosphorylation in mesophyll and bundle sheath thylakoids was analyzed using mass spectrometry and protein blotting before and after lead treatment. Both methods clearly demonstrated increase in phosphorylation of the PSII proteins upon treatment with Pb2+, however, the extent of D1, D2 and CP43 phosphorylation in the mesophyll chloroplasts was clearly higher than in bundle sheath cells. We found that in the presence of Pb ions there was no detectable dephosphorylation of the strongly phosphorylated D1 and PsbH proteins of PSII complex in darkness or under far red light. These results suggest that Pb2+ stimulates phosphorylation of PSII core proteins, which can affect stability of the PSII complexes and the rate of D1 protein degradation. Increased phosphorylation of the PSII core proteins induced by Pb ions may be a crucial protection mechanism stabilizing optimal composition of the PSII complexes under metal stress conditions. Our results show that acclimation to Pb ions was achieved in both types of maize chloroplasts in the same way. However, these processes are obviously more complex because of different metabolic status in mesophyll and bundle sheath chloroplasts.  相似文献   

17.
Fristedt R  Vener AV 《PloS one》2011,6(9):e24565
Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported.  相似文献   

18.
In the north of China, wheat plants are often stressed by heat and high light during grain-filling stage, which leads to injury in photosynthetic apparatus and decline in photosynthetic rate. In order to develop a method to protect photosynthetic apparatus in wheat leaves subjected to heat and high light stress, the effects of SA (salicylic acid) and FSBA (5′-p-fluorosulfonylbenzoyl adenosine) on PK (protein kinase) activity, D1 protein degradation and the performance of PSII were investigated in present work. Our results showed that PK activity enhanced under heat and high light stress and declined when stress was removed. FSBA pretreatment resulted in marked decreases in PK activity and D1 protein level, suggesting a correlationship between degradation of D1 protein and phosphorylation. After 2 h of stress, D1 protein level in water-pretreated leaves decreased to 79% of control and then recovered to 81% after 3 h of recovery. This clearly indicated that the damage of D1 protein induced by heat and high light stress was reversible. Compared to the control, SA pretreatment could not only increase PK activity, retard the degradation of D1 protein during heat and high light stress, but also accelerate the recovery of D1 protein level when the stress was removed. Correspondingly, Fv/Fm (maximum photochemical efficiency of PSII), ΦPSII (actual photochemical efficiency of PSII), ETR (electron transfer rate) and Pn (net photosynthetic rate) in SA-treated leaves were higher than that in leaves of control under both stress and non-stress conditions. Taken together, our results revealed that SA pretreatment could significantly alleviate damages of heat and high light stress on D1 protein and PSII of wheat leaves, and accelerate restoration of photosynthetic function.  相似文献   

19.
Overwintering needles of the evergreen conifer Douglas fir exhibited an association between arrest of the xanthophyll cycle in the dissipating state (as zeaxanthin + antheraxanthin; Z + A) with a strongly elevated predawn phosphorylation state of the D1 protein of the photosystem II (PSII) core. Furthermore, the high predawn phosphorylation state of PSII core proteins was associated with strongly increased levels of TLP40, the cyclophilin-like inhibitor of PSII core protein phosphatase, in winter versus summer. In turn, decreases in predawn PSII efficiency, Fv/Fm, in winter were positively correlated with pronounced decreases in the non-phosphorylated form of D1. In contrast to PSII core proteins, the light-harvesting complex of photosystem II (LHCII) did not exhibit any nocturnally sustained phosphorylation. The total level of the D1 protein was found to be the same in summer and winter in Douglas fir when proteins were extracted in a single step from whole needles. In contrast, total D1 protein levels were lower in thylakoid preparations of overwintering needles versus needles collected in summer, indicating that D1 was lost during thylakoid preparation from overwintering Douglas fir needles. In contrast to total D1, the ratio of phosphorylated to non-phosphorylated D1 as well as the levels of the PsbS protein were similar in thylakoid versus whole needle preparations. The level of the PsbS protein, that is required for pH-dependent thermal dissipation, exhibited an increase in winter, whereas LHCII levels remained unchanged.  相似文献   

20.
Photosystem II (PSII) is a primary target for light‐induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo‐oxidative damage. We propose that PSII core phosphorylation contributes to fine‐tuned degradation of D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号