首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rebuilding flavodoxin from C alpha coordinates: a test study   总被引:4,自引:0,他引:4  
L S Reid  J M Thornton 《Proteins》1989,5(2):170-182
The tertiary structure of flavodoxin has been model built from only the X-ray crystallographic alpha-carbon coordinates. Main-chain atoms were generated from a dictionary of backbone structures. Side-chain conformations were initially set according to observed statistical distributions, clashes were resolved with reference to other knowledge-based parameters, and finally, energy minimization was applied. The RMSD of the model was 1.7 A across all atoms to the native structure. Regular secondary structural elements were modeled more accurately than other regions. About 40% of the chi 1 torsional angles were modeled correctly. Packing of side chains in the core was energetically stable but diverged significantly from the native structure in some regions. The modeling of protein structures is increasing in popularity but relatively few checks have been applied to determine the accuracy of the approach. In this work a variety of parameters have been examined. It was found that close contacts, and hydrogen-bonding patterns could identify poorly packed residues. These tests, however, did not indicate which residues had a conformation different from the native structure or how to move such residues to bring them into agreement. To assist in the modeling of interacting side chains a database of known interactions has been prepared.  相似文献   

2.
We evaluate 3D models of human nucleoside diphosphate kinase, mouse cellular retinoic acid binding protein I, and human eosinophil neurotoxin that were calculated by MODELLER , a program for comparative protein modeling by satisfaction of spatial restraints. The models have good stereochemistry and are at least as similar to the crystallographic structures as the closest template structures. The largest errors occur in the regions that were not aligned correctly or where the template structures are not similar to the correct structure. These regions correspond predominantly to exposed loops, insertions of any length, and non-conserved side chains. When a template structure with more than 40% sequence identity to the target protein is available, the model is likely to have about 90% of the mainchain atoms modeled with an rms deviation from the X-ray structure of ≈ 1 Å, in large part because the templates are likely to be that similar to the X-ray structure of the target. This rms deviation is comparable to the overall differences between refined NMR and X-ray crystallography structures of the same protein. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Hartmann C  Antes I  Lengauer T 《Proteins》2009,74(3):712-726
We describe a scoring and modeling procedure for docking ligands into protein models that have either modeled or flexible side-chain conformations. Our methodical contribution comprises a procedure for generating new potentials of mean force for the ROTA scoring function which we have introduced previously for optimizing side-chain conformations with the tool IRECS. The ROTA potentials are specially trained to tolerate small-scale positional errors of atoms that are characteristic of (i) side-chain conformations that are modeled using a sparse rotamer library and (ii) ligand conformations that are generated using a docking program. We generated both rigid and flexible protein models with our side-chain prediction tool IRECS and docked ligands to proteins using the scoring function ROTA and the docking programs FlexX (for rigid side chains) and FlexE (for flexible side chains). We validated our approach on the forty screening targets of the DUD database. The validation shows that the ROTA potentials are especially well suited for estimating the binding affinity of ligands to proteins. The results also show that our procedure can compensate for the performance decrease in screening that occurs when using protein models with side chains modeled with a rotamer library instead of using X-ray structures. The average runtime per ligand of our method is 168 seconds on an Opteron V20z, which is fast enough to allow virtual screening of compound libraries for drug candidates.  相似文献   

4.
Recently we developed methods for the construction of knowledge-based mean fields from a data base of known protein structures. As shown previously, this approach can be used to calculate ensembles of probable conformations for short fragments of polypeptide chains. Here we develop procedures for the assembly of short fragments to complete three-dimensional models of polypeptide chains. The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given length, and an ensemble of probable conformations is calculated for each fragment. The fragments are assembled to a complete model by choosing appropriate conformations from the individual ensembles and by averaging over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average angles. From the average angles the local variability of the structure can be calculated, which is a useful criterion for the reliability of the model. The procedure is applied to the calculation of the local backbone conformations of myoglobin and lysozyme whose structures have been solved by X-ray analysis and thymosin beta 4, a polypeptide of 43 amino acid residues whose structure was recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the calculated local backbone conformations are similar to the experimentally determined structures.  相似文献   

5.
Dolan MA  Keil M  Baker DS 《Proteins》2008,72(4):1243-1258
Although the number of known protein structures is increasing, the number of protein sequences without determined structures is still much larger. Three-dimensional (3D) protein structure information helps in the understanding of functional mechanisms, but solving structures by X-ray crystallography or NMR is often a lengthy and difficult process. A relatively fast way of determining a protein's 3D structure is to construct a computer model using homologous sequence and structure information. Much work has gone into algorithms that comprise the ORCHESTRAR homology modeling program in the SYBYL software package. This novel homology modeling tool combines algorithms for modeling conserved cores, variable regions, and side chains. The paradigm of using existing knowledge from multiple templates and the underlying protein environment knowledgebase is used in all of these algorithms, and will become even more powerful as the number of experimentally derived protein structures increases. To determine how ORCHESTRAR compares to Composer (a broadly used, but an older tool), homology models of 18 proteins were constructed using each program so that a detailed comparison of each step in the modeling process could be carried out. Proteins modeled include kinases, dihydrofolate reductase, HIV protease, and factor Xa. In almost all cases ORCHESTRAR produces models with lower root-mean-squared deviation (RMSD) values when compared with structures determined by X-ray crystallography or NMR. Moreover, ORCHESTRAR produced a homology model for three target sequences where Composer failed to produce any. Data for RMSD comparisons between structurally conserved cores, structurally variable regions, side-chain conformations are presented, as well as analyses of active site and protein-protein interface configurations.  相似文献   

6.
Various theoretical concepts, such as free energy potentials, electrostatic interaction potentials, atomic packing, solvent-exposed surface, and surface charge distribution, were tested for their ability to discriminate between native proteins and misfolded protein models. Misfolded models were constructed by introducing incorrect side chains onto polypeptide backbones: side chains of the alpha-helical hemerythrin were modeled on the beta-sheeted backbone of immunoglobulin VL domain, whereas those of the VL domain were similarly modeled on the hemerythrin backbone. CONGEN, a conformational space sampling program, was used to construct the side chains, in contrast to the previous work, where incorrect side chains were modeled in all trans conformations. Capability of the conformational search procedure to reproduce native conformations was gauged first by rebuilding (the correct) side chains in hemerythrin and the VL domain: constructs with r.m.s. differences from the x-ray side chains 2.2-2.4 A were produced, and many calculated conformations matched the native ones quite well. Incorrectly folded models were then constructed by the same conformational protocol applied to incorrect amino acid sequences. All CONGEN constructs, both correctly and incorrectly folded, were characterized by exceptionally small molecular surfaces and low potential energies. Surface charge density, atomic packing, and Coulomb formula-based electrostatic interactions of the misfolded structures and the correctly folded proteins were similar, and therefore of little interest for diagnosing incorrect folds. The following criteria clearly favored the native structures over the misfolded ones: 1) solvent-exposed side-chain nonpolar surface, 2) number of buried ionizable groups, and 3) empirical free energy functions that incorporate solvent effects.  相似文献   

7.
The protein structures of six comparative modeling targets were predicted in a procedure that relied on improved energy minimization, without empirical rules, to position all new atoms. The structures of human nucleoside diphosphate kinase NM23-H2, HPr from Mycoplasma capricolum, 2Fe-2S ferredoxin from Haloarcula marismortui, eosinophil-derived neurotoxin (EDN), mouse cellular retinoic acid protein I (CRABP1), and P450eryf were predicted with root mean square deviations on Cα atoms of 0.69, 0.73, 1.11, 1.48, 1.69, and 1.73 Å, respectively, compared to the target crystal structures. These differences increased as the sequence similarity between the target and parent proteins decreased from about 60 to 20% identity. More residues were predicted than form the common region shared by the two crystal structures. In most cases insertions or deletions between the target and the related protein of known structure were not correctly positioned. One two residue insertion in CRABP1 was predicted in the correct conformation, while a nine residue insertion in EDN was predicted in the correct spatial region, although not in the correct conformation. The positions of common cofactors and their binding sites were predicted correctly, even when overall sequence similarity was low. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The three-dimensional structure of rubredoxin from the hyperthermophilic archaebacterium, Pyrococcus furiosus, has been modeled from the X-ray crystal structures of three homologous proteins from Clostridium pasteurianum, Desulfovibrio gigas, and Desulfovibrio vulgaris. All three homology models are similar. When comparing the positions of all heavy atoms and essential hydrogen atoms to the recently solved crystal structure (Day, M. W., et al., 1992, Protein Sci. 1, 1494-1507) of the same protein, the homology model differ from the X-ray structure by 2.09 A root mean square (RMS). The X-ray and the zinc-substituted NMR structures (Blake, P. R., et al., 1992b, Protein Sci. 1, 1508-1521) show a similar level of difference (2.05 A RMS). On average, the homology models are closer to the X-ray structure than to the NMR structures (2.09 vs. 2.42 A RMS).  相似文献   

9.
Protein side chains make most of the specific contacts between proteins and other molecules, and their conformational properties have been studied for many years. These properties have been analyzed primarily in the form of rotamer libraries, which cluster the observed conformations into groups and provide frequencies and average dihedral angles for these groups. In recent years, these libraries have improved with higher resolution structures and using various criteria such as high thermal factors to eliminate side chains that may be misplaced within the crystallographic model coordinates. Many of these side chains have highly non-rotameric dihedral angles. The origin of side chains with high B-factors and/or with non-rotameric dihedral angles is of interest in the determination of protein structures and in assessing the prediction of side chain conformations. In this paper, using a statistical analysis of the electron density of a large set of proteins, it is shown that: (1) most non-rotameric side chains have low electron density compared to rotameric side chains; (2) up to 15% of chi1 non-rotameric side chains in PDB models can clearly be fit to density at a single rotameric conformation and in some cases multiple rotameric conformations; (3) a further 47% of non-rotameric side chains have highly dispersed electron density, indicating potentially interconverting rotameric conformations; (4) the entropy of these side chains is close to that of side chains annotated as having more than one chi(1) rotamer in the crystallographic model; (5) many rotameric side chains with high entropy clearly show multiple conformations that are not annotated in the crystallographic model. These results indicate that modeling of side chains alternating between rotamers in the electron density is important and needs further improvement, both in structure determination and in structure prediction.  相似文献   

10.
J Moult  M N James 《Proteins》1986,1(2):146-163
The feasibility of determining the conformation of segments of a polypeptide chain up to six residues in length in globular proteins by means of a systematic search through the possible conformations has been investigated. Trial conformations are generated by using representative sets of phi, psi, and chi angles that have been derived from an examination of the distributions of these angles in refined protein structures. A set of filters based on simple rules that protein structures obey is used to reduce the number of conformations to a manageable total. The most important filters are the maintenance of chain integrity and the avoidance of too-short van der Waals contacts with the rest of the protein and with other portions of the segment under construction. The procedure is intended to be used with approximate models so that allowance is made throughout for errors in the rest of the structure. All possible main chains are first constructed and then all possible side-chain conformations are built onto each of these. The electrostatic energy, including a solvent screening term, and the exposed hydrophobic area are evaluated for each accepted conformation. The method has been tested on two segments of chain in the trypsin like enzyme from Streptomyces griseus. It is found that there is a wide spread of energies among the accepted conformations, and the lowest energy ones have satisfactorily small root mean square deviations from the X-ray structure.  相似文献   

11.
In this paper we discuss the problem of including solvation free energies in evaluating the relative stabilities of loops in proteins. A conformational search based on a gas-phase potential function is used to generate a large number of trial conformations. As has been found previously, the energy minimization step in this process tends to pack charged and polar side chains against the protein surface, resulting in conformations which are unstable in the aqueous phase. Various solvation models can easily identify such structures. In order to provide a more severe test of solvation models, gas phase conformations were generated in which side chains were kept extended so as to maximize their interaction with the solvent. The free energies of these conformations were compared to that calculated for the crystal structure in three loops of the protein E. coli RNase H, with lengths of 7, 8, and 9 residues. Free energies were evaluated with a finite difference Poisson-Boltzmann (FDPB) calculation for electrostatics and a surface area-based term for nonpolar contributions. These were added to a gas-phase potential function. A free energy function based on atomic solvation parameters was also tested. Both functions were quite successful in selecting, based on a free energy criterion, conformations quite close to the crystal structure for two of the three loops. For one loop, which is involved in crystal contacts, conformations that are quite different from the crystal structure were also selected. A method to avoid precision problems associated with using the FDPB method to evaluate conformational free energies in proteins is described. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Computational prediction of side‐chain conformation is an important component of protein structure prediction. Accurate side‐chain prediction is crucial for practical applications of protein structure models that need atomic‐detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side‐chain prediction methods in reproducing the side‐chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane‐spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side‐chains at protein interfaces and membrane‐spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane‐spanning regions as for modeling monomers. Proteins 2014; 82:1971–1984. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
NMR and X-ray structures for the immunosuppressant cyclosporin A (CsA) reveal a remarkable difference between the unbound (free) conformation in organic solvents and the conformation bound to cyclophilin. We have performed computer simulations of the molecular dynamics of CsA under a variety of conditions and confirmed the stability of these two conformations at room temperature in water and in vacuum. However, when the free conformation was modeled in vacuum at 600 K, a transition pathway leading to the bound conformation was observed. This involved a change in the cis MeLeu-9 peptide bond to a trans conformation and the movement of the side chains forming the dominant hydrophobic cluster (residues MeBmt-1, MeLeu-4, MeLeu-6, and MeLeu-10) to the opposite side of the plane formed by the backbone atoms in the molecular ring. The final conformation had a backbone RMS deviation from the bound conformation of 0.53 A and was as stable in dynamics simulations as the bound conformation. Our calculations allowed us to make a detailed analysis of a transition pathway between the free and the bound conformations of CsA and to identify two distinct regions of coordinated movement in CsA, both of which underwent transitions independently.  相似文献   

14.
Rohl CA  Strauss CE  Chivian D  Baker D 《Proteins》2004,55(3):656-677
A major limitation of current comparative modeling methods is the accuracy with which regions that are structurally divergent from homologues of known structure can be modeled. Because structural differences between homologous proteins are responsible for variations in protein function and specificity, the ability to model these differences has important functional consequences. Although existing methods can provide reasonably accurate models of short loop regions, modeling longer structurally divergent regions is an unsolved problem. Here we describe a method based on the de novo structure prediction algorithm, Rosetta, for predicting conformations of structurally divergent regions in comparative models. Initial conformations for short segments are selected from the protein structure database, whereas longer segments are built up by using three- and nine-residue fragments drawn from the database and combined by using the Rosetta algorithm. A gap closure term in the potential in combination with modified Newton's method for gradient descent minimization is used to ensure continuity of the peptide backbone. Conformations of variable regions are refined in the context of a fixed template structure using Monte Carlo minimization together with rapid repacking of side-chains to iteratively optimize backbone torsion angles and side-chain rotamers. For short loops, mean accuracies of 0.69, 1.45, and 3.62 A are obtained for 4, 8, and 12 residue loops, respectively. In addition, the method can provide reasonable models of conformations of longer protein segments: predicted conformations of 3A root-mean-square deviation or better were obtained for 5 of 10 examples of segments ranging from 13 to 34 residues. In combination with a sequence alignment algorithm, this method generates complete, ungapped models of protein structures, including regions both similar to and divergent from a homologous structure. This combined method was used to make predictions for 28 protein domains in the Critical Assessment of Protein Structure 4 (CASP 4) and 59 domains in CASP 5, where the method ranked highly among comparative modeling and fold recognition methods. Model accuracy in these blind predictions is dominated by alignment quality, but in the context of accurate alignments, long protein segments can be accurately modeled. Notably, the method correctly predicted the local structure of a 39-residue insertion into a TIM barrel in CASP 5 target T0186.  相似文献   

15.
Summary The possible conformations of integral membrane proteins are restricted by the nature of their environment. In order to satisfy the requirement of maximum hydrogen bonding, those protions of the polypeptide chain which are in contact with lipid hydrocarbon must be organized into regions of regular secondary structure. As possible models of the intramembranous regions of integral membrane proteins, three types of regular structues are discussed. Two, the alpha helix and the beta-pleated sheet, are regularly occurring structural features of soluble proteins. The third is a newly proposed class of conformations called beta helices. These helices have unique features which make them particularly well-suited to the lipid bilayer environment. The central segment of the membrane-spanning protein glycophorin can be arranged into a beta helix with a hydrophobic exterior and a polar interior containing charged amino-acid side chains. Such structures could function as transmembrane ion channels. A model of the activation process based on a hypothetical equilibrium between alpha and beta helical forms of a transmembrane protein is presented. The model can accurately reproduce the kinetics and voltage dependence of the channels in nerve.  相似文献   

16.
Mark E. Snow 《Proteins》1993,15(2):183-190
A novel scheme for the parameterization of a type of “potential energy” function for protein molecules is introduced. The function is parameterized based on the known conformations of previously determined protein structures and their sequence similarity to a molecule whose conformation is to be calculated. Once parameterized, minima of the potential energy function can be located using a version of simulated annealing which has been previously shown to locate global and near-global minima with the given functional form. As a test problem, the potential was parameterized based on the known structures of the rubredoxins from Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Clostridium pasteurianum, which vary from 45 to 54 amino acids in length, and the sequence alignments of these molecules with the rubredoxin sequence from Desulfovibrio gigas. Since the Desulfovibrio gigas rubredeoxin conformation has also been determined, it is possible to check the accuracy of the results. Ten simulated-annealing runs from random starting conformations were performed. Seven of the 10 resultant conformations have an all-Cα rms deviation from the crystallographically determined conformation of less than 1.7 Å. For five of the structures, the rms deviation is less than 0.8 Å. Four of the structures have conformations which are virtually identical to each other except for the position of the carboxy-terminal residue. This is also the conformation which is achieved if the determined crystal structure is minimized with the same potential. The all-Cα rms difference between the crystal and minimized crystal structures is 0.6 Å. It is further observed that the “energies” of the structures according to the potential function exhibit a strong correlation with rms deviation from the native structure. The conformations of the individual model structures and the computational aspects of the modeling procedure are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

17.
L Holm  C Sander 《Proteins》1992,14(2):213-223
An unknown protein structure can be predicted with fair accuracy once an evolutionary connection at the sequence level has been made to a protein of known 3-D structure. In model building by homology, one typically starts with a backbone framework, rebuilds new loop regions, and replaces nonconserved side chains. Here, we use an extremely efficient Monte Carlo algorithm in rotamer space with simulated annealing and simple potential energy functions to optimize the packing of side chains on given backbone models. Optimized models are generated within minutes on a workstation, with reasonable accuracy (average of 81% side chain chi 1 dihedral angles correct in the cores of proteins determined at better than 2.5 A resolution). As expected, the quality of the models decreases with decreasing accuracy of backbone coordinates. If the back-bone was taken from a homologous rather than the same protein, about 70% side chain chi 1 angles were modeled correctly in the core in a case of strong homology and about 60% in a case of medium homology. The algorithm can be used in automated, fast, and reproducible model building by homology.  相似文献   

18.
Effective van der Waals radii were calibrated in such a way that molecular models built from standard bond lengths and bond angles reproduced the amino acid conformations observed by crystallography in proteins and peptides. The calibrations were based on the comparison of the Ramachandran plots prepared from high-resolution X-ray data of proteins and peptides with the allowed phi, psi torsional angle space for the dipeptide molecular models. The calibrated radii are useful as criteria with which to filter energetically improbable conformations in molecular modeling studies of proteins and peptides.  相似文献   

19.
Side-chain entropy and packing in proteins.   总被引:9,自引:5,他引:4       下载免费PDF全文
What role does side-chain packing play in protein stability and structure? To address this question, we compare a lattice model with side chains (SCM) to a linear lattice model without side chains (LCM). Self-avoiding configurations are enumerated in 2 and 3 dimensions exhaustively for short chains and by Monte Carlo sampling for chains up to 50 main-chain monomers long. This comparison shows that (1) side-chain degrees of freedom increase the entropy of open conformations, but side-chain steric exclusion decreases the entropy of compact conformations, thus producing a substantial entropy that opposes folding; (2) there is a side-chain “freezing” or ordering, i.e., a sharp decrease in entropy, near maximum compactness; and (3) the different types of contacts among side chains (s) and main-chain elements (m) have different frequencies, and the frequencies have different dependencies on compactness. mm contacts contribute significantly only at high densities, suggesting that main-chain hydrogen bonding in proteins may be promoted by compactness. The distributions of mm, ms, and ss contacts in compact SCM configurations are similar to the distributions in protein structures in the Brookhaven Protein Data Bank. We propose that packing in proteins is more like the packing of nuts and bolts in a jar than like the pairwise matching of jigsaw puzzle pieces.  相似文献   

20.
The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to assess the efficiency of the ROSETTA method for ab initio protein structure prediction. For each protein, four models generated using the ROSETTA procedure were simulated for periods of between 5 and 400 nsec in explicit solvent, under identical conditions. In addition, the experimentally determined structure and the experimentally derived structure in which the side chains of all residues had been deleted and then regenerated using the WHATIF program were simulated and used as controls. A significant improvement in the deviation of the model structures from the experimentally determined structures was observed in several cases. In addition, it was found that in certain cases in which the experimental structure deviated rapidly from the initial structure in the simulations, indicating internal strain, the structures were more stable after regenerating the side-chain positions. Overall, the results indicate that molecular dynamics simulations on a tens to hundreds of nanoseconds time scale are useful for the refinement of homology or ab initio models of small to medium-size proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号