首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The family of aspartic proteinases includes several human enzymes that may play roles in both physiological and pathophysiological processes. The human lysosomal aspartic proteinase cathepsin D is thought to function in the normal degradation of intracellular and endocytosed proteins but has also emerged as a prognostic indicator of breast tumor invasiveness. Presented here are results from a continuing effort to elucidate the factors that contribute to specificity of ligand binding at individual subsites within the cathepsin D active site. The synthetic peptide Lys-Pro-Ile-Glu-Phe*Nph-Arg-Leu has proven to be an excellent chromogenic substrate for cathepsin D yielding a value of kcat/Km = 0.92 x 10(-6) s-1 M-1 for enzyme isolated from human placenta. In contrast, the peptide Lys-Pro-Ala-Lys-Phe*Nph-Arg-Leu and all derivatives with Ala-Lys in the P3-P2 positions are either not cleaved at all or cleaved with extremely poor efficiency. To explore the binding requirements of the S3 and S2 subsites of cathepsin D, a series of synthetic peptides was prepared with systematic replacements at the P2 position fixing either Ile or Ala in P3. Kinetic parameters were determined using both human placenta cathepsin D and recombinant human fibroblast cathepsin D expressed in Escherichia coli. A rule-based structural model of human cathepsin D, constructed on the basis of known three-dimensional structures of other aspartic proteinases, was utilized in an effort to rationalize the observed substrate selectivity.  相似文献   

2.
Human renin is inactivated by a diazoacyl compound (diazoacetylglycine ethyl ester; N2CHCO-Gly-OEt) in the presence of Cu(II). The mechanism of the inactivation is presumably identical to that which has been determined for pepsin and several other proteinases: esterification of the β-carboxyl of an aspartic acid residue at the active site of the enzyme. Renin's inhibition by the diazoacyl reagent, its specificity toward a hydrophobic sequence, and its inhibition by pepstatin, all suggest a close relationship to the acid proteinases, especially pepsin and cathepsin D. However, renin, a neutral proteinase, would be better classified together with other diazoacyl-inhibited enzymes by active site rather than pH optimum. The term “aspartic proteinase” is suggested for this group of enzymes.  相似文献   

3.
The interactions of five human enzymes (renin, pepsin, gastricsin, cathepsin D and cathepsin E) and the aspartic proteinase from Endothia parasitica with several series of synthetic inhibitors were examined. All of the inhibitors contained the dipeptide analogue statine or its phenylalanine or cyclohexylalanine homologues in the P1-P1' positions. The residues occupying the peripheral sub-sites (P4 to P3') were varied systematically and inhibitory constants were determined for the interactions with each of the proteinases. Inhibitors were elucidated that specifically inhibited human renin and did not affect any of the other human enzymes or the fungal proteinase. With suitable selection of residues to occupy individual sub-sites, effective inhibitors of specific human aspartic proteinases may now be designed.  相似文献   

4.
M Fusek  M Mares  J Vágner  Z Voburka  M Baudys 《FEBS letters》1991,287(1-2):160-162
Two propart peptides of aspartic proteinases, the propart peptide of chicken pepsin and human cathepsin D, respectively, were investigated from the point of view of their inhibitory activity for a set of aspartic proteinases. These peptides display a very broad inhibitory spectrum. The strongest inhibition was observed for pepsin A-like proteinases where propart peptides can be used as titrants of active enzymes.  相似文献   

5.
1. Five synthetic peptides which together spanned the propart segment of human prorenin were tested for their ability to interact with human renin, pepsin, gastricsin, cathepsin D, cathepsin E, calf chymosin and the aspartic proteinase from Endothia parasitica. 2. While two peptides showed no significant effect with any of the enzymes, a further two were cleaved by several enzymes. 3. Only one (corresponding to the 32P-43P residues in the propart sequence) acted as a weak competitive inhibitor of most of the enzymes.  相似文献   

6.
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu, a specific inhibitor of aspartate proteinases of the pepsin type, was synthesized. Its bonding to activated 6-aminohexanoic acid-Sepharose 4B afforded an affinity support suitable for the purification of human, porcine, and chicken pepsin, human gastricsin, and bovine cathepsin D. These enzymes bind to the support over the pH range 2-5 at 0-1.5 M concentration of NaCl. A buffer at pH greater than or equal to 6, low ionic strength, and containing 20% dioxane can serve as a general desorption agent. The proteinases were isolated from the crude extracts by a single-step procedure in a high degree of purity and in yields exceeding 70%; human pepsin, however, was not separated from human gastricsin. The support does not show any binding capacity for rat plasma renin at pH 7.4 and for some cysteine endopeptidases (cathepsin B, H, and L) at pH 3-5. The cathepsin D preparations isolated by affinity chromatography on the new support and on pepstatin-Sepharose were of the same degree of purity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequences, and specific activity.  相似文献   

7.
The presence of aspartic protease inhibitor in filarial parasite Brugia malayi (Bm-Aspin) makes it interesting to study because of the fact that the filarial parasite never encounters the host digestive system. Here, the aspartic protease inhibition kinetics of Bm-Aspin and its NMR structural characteristics have been investigated. The overall aim of this study is to explain the inhibition and binding properties of Bm-Aspin from its structural point of view. UV-spectroscopy and multi-dimensional NMR are the experiments that have been performed to understand the kinetic and structural properties of Bm-Aspin respectively. The human aspartic proteases that are considered for this study are pepsin, renin, cathepsin-E and cathepsin-D. The results of this analysis performed with the specific substrate [Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu (4-pyridylmethyl) ester] against aspartic proteases suggest that Bm-Aspin inhibits the activities of all four human aspartic proteases. The kinetics studies indicate that Bm-Aspin follows a competitive mode of inhibition for pepsin and cathepsin-E, non-competitive for renin and mixed mode for cathepsin-D. The triple resonance NMR experiments on Bm-Aspin suggested the feasibility of carrying out NMR studies to obtain its solution structure. The NMR titration studies on the interactions of Bm-Aspin with the proteases indicate that it undergoes fast-exchange phenomena among themselves. In addition to this, the chemical shift perturbations for some of the residues of Bm-Aspin observed from 15N-HSQC spectra upon the addition of saturated amounts of aspartic proteases suggest the binding between Bm-Aspin and human aspartic proteases. They also provide information on the variations in the intensities and mode of binding between the proteases duly corroborating with the results from the protease inhibition assay method.  相似文献   

8.
Cathepsin E is an intracellular aspartic proteinase of the pepsin family predominantly expressed in cells of the immune system and believed to contribute to homeostasis by participating in host defense mechanisms. Studies on its enzymatic properties, however, have been limited by a lack of sensitive and selective substrates. For a better understanding of the importance of this enzyme in vivo, we designed and synthesized a highly sensitive peptide substrate for cathepsin E based on the sequence of the specific cleavage site of alpha2-macroglobulin. The substrate constructed, MOCAc-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH2 [where MOCAc is (7-methoxycoumarin-4-yl)acetyl and Dnp is dinitrophenyl], derived from the cleavage site sequence of human alpha2-macroglobulin, was the most sensitive and selective for cathepsin E, with k(cat)/K(m) values of 8-11 microM(-1) s(-1), whereas it was resistant to hydrolysis by the analogous aspartic proteinases cathepsin D and pepsin, as well as the lysosomal cysteine proteinases cathepsins B, L, and H. The assay allows the detection of a few fmol of cathepsin E, even in the presence of plasma and cell lysate, and gives accurate results over a wide enzyme concentration range. This substrate might represent a useful tool for monitoring and accurately quantifying cathepsin E, even in crude enzyme preparations.  相似文献   

9.
F Cumin  D Nisato  J P Gagnol  P Corvol 《Biochemistry》1987,26(24):7615-7621
The in vitro binding of [3H]SR42128 (Iva-Phe-Nle-Sta-Ala-Sta-Arg), a potent inhibitor of human renin activity, to purified human renin and a number of other aspartic proteases was examined. SR42128 was found to be a competitive inhibitor of human renin, with a Ki of 0.35 nM at pH 5.7 and 2.0 nM at pH 7.4; it was thus more effective at pH 5.7 than at pH 7.4. Scatchard analysis of the interaction binding of [3H]SR42128 to human renin indicated that binding was reversible and saturable at both pH 5.7 and pH 7.4. There was a single class of binding sites, and the KD was 0.9 nM at pH 5.7 and 1 nM at pH 7.4. The association rate was 10 times more rapid at pH 5.7 than at pH 7.4, but there was no difference between the rates of dissociation of the enzyme-inhibitor complex at the two pHs. The effect of pH on the binding of [3H]SR42128 to human renin, cathepsin D, pepsin, and gastricsin was also examined over the pH range 3-8. All the aspartic proteases had a high affinity for the inhibitor at low pH. However, at pH 7.4, [3H]SR42128 was bound only to human renin and to none of the other aspartic proteases. Competitive binding studies with [3H]SR42128 and a number of other inhibitors on human renin or cathepsin D were used to examine the relationships between structure and activity in these systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Crystal structure of human pepsin and its complex with pepstatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

11.
To investigate the effect of “secondary interaction” on hydrolysis by various acid proteinases from molds and yeasts, synthetic peptides
amino acid residues) were used as substrates. Pepsin was used for the comparative study. These peptides were split at the peptide bonds indicated by the arrows, permitting examination of the effect of residue X distant by two or three amino acid residues from the hydrolytic site in the peptides. According to the system of Schechter and Berger (Biochem. Biophys. Res. Commun. 27; 157, 1967), the amino acid residues in peptide substrates were numbered P1, P2, etc. toward the N-terminal direction from the site of hydrolysis, and P1′, P2′, etc. toward the C-terminal direction. The results indicated that hydrolysis by these microbial enzymes is affected by at least six amino acid residues (P1-P3 and P1′-P3′) in peptide substrates, as is seen with pepsin. Elongation of the peptide chain with suitable amino acid residues from P1 to P2 or P3 and from P1′ to P2′ or P3′ in peptide substrates resulted in much or less increase of hydrolysis depending upon the species of the enzyme producers.  相似文献   

12.
The active center of human leukocyte cathepsin G, human pancreatic chymotrypsin II, and bovine α-chymotrypsin has been investigated with a series of substrates of general formula succinyl-(l-alanine)n-phenylalanine-p-nitroanilide (n = 0 to 3). The three proteinases have an extended substrate binding site which includes at least six subsites. Secondary interactions are very important for their catalytic power since the longest substrate is hydrolyzed 600 to 1100 times faster than the shortest one. The regulatory subsite is S4 for bovine α-chymotrypsin and human cathepsin G whereas it is S5 for human chymotrypsin II. Cathepsin G is a poor catalyst compared to the two other enzymes.  相似文献   

13.
The nematode Ascaris suum primarily infects pigs, but also causes disease in humans. As part of its survival mechanism in the intestinal tract of the host, the worm produces a number of protease inhibitors, including pepsin inhibitor-3 (PI3), a 17 kDa protein. Recombinant PI3 expressed in E. coli has previously been shown to be a competitive inhibitor of a subgroup of aspartic proteinases: pepsin, gastricsin and cathepsin E. The previously determined crystal structure of the complex of PI3 with porcine pepsin (p. pepsin) showed that there are two regions of contact between PI3 and the enzyme. The first three N-terminal residues (QFL) bind into the prime side of the active site cleft and a polyproline helix (139-143) in the C-terminal domain of PI3 packs against residues 289-295 that form a loop in p. pepsin. Mutational analysis of both inhibitor regions was conducted to assess their contributions to the binding affinity for p. pepsin, human pepsin (h. pepsin) and several malarial aspartic proteases, the plasmepsins. Overall, the polyproline mutations have a limited influence on the Ki values for all the enzymes tested, with the values for p. pepsin remaining in the low-nanomolar range. The largest effect was seen with a Q1L mutant, with a 200-fold decrease in Ki for plasmepsin 2 from Plasmodium falciparum (PfPM2). Thermodynamic measurements of the binding of PI3 to p. pepsin and PfPM2 showed that inhibition of the enzymes is an entropy-driven reaction. Further analysis of the Q1L mutant showed that the increase in binding affinity to PfPM2 was due to improvements in both entropy and enthalpy.  相似文献   

14.
The amino-terminal structure of rat gastric cathepsin E was identified and compared with the corresponding regions of human procathepsin E and other aspartic proteinases. The alignment revealed that cathepsin E has the most extended amino-terminal structure in aspartic proteinases, thus suggesting that the activation peptide (propeptide) of the human enzyme is 39-residues long. Analysis of oligosaccharide units suggested that rat cathepsin E possesses one N-linked carbohydrate unit, probably of the high mannose type. No evidence was obtained for the presence of O-linked sugars in rat cathepsin E.  相似文献   

15.
Human plasma fibronectin contains two latent aspartic proteinases, FN-gelatinase and FN-lamininase. Both enzymes can be generated and activated in the presence of Ca2+ from the purified cathepsin D-produced 190-kDa fibronectin fragment. We investigated the proteolytic activity and cleavage specificity of both enzymes in a range of pH from 3.5 to 9.0 using the B chain of oxidized bovine insulin and chromogenic peptides as substrates. The inhibition of the enzymes by several natural inhibitors from human plasma was also tested. The specificities of FN-gelatinase and FN-lamininase are similar to other major acidic proteinases, including pepsin, renin, cathepsin D, and HIV-proteinases. Both enzymes mainly hydrolyze three peptide bonds in the oxidized insulin B chain, namely Glu–Ala (residues 13–14), Tyr–Leu (residues 16–17), and Phe–Phe (residues 24–25). For the peptide substrates H-Pro-Thr-Glu-Phe-p-nitro-Phe-Arg-Leu-OH and H-Phe-Gly-His-p-nitro-Phe-Phe-Val-Leu-OMe that were cleaved the respective values of k cat/K M were 105.1 and 11.8 mM–1 sec–1 for cleavage by FN-gelatinase, and 123.2 and 15.5 mM–1 sec–1 for cleavage by FN-lamininase. The maximal activities of both enzymes were observed in a range between pH 5.6 and 6.3 and they became inactivated at a pH value above 8.4. Both FN-gelatinase and FN-lamininase were efficiently inhibited by 2-macroglobulin.  相似文献   

16.
The nonapeptide H-Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-NH2 containing the retroviral Tyr-Pro cleavage site is a good substrate for the proteinase of human immunodeficiency viruses but it is not readily hydrolyzed by other nonviral proteinases including the structurally related pepsin-like aspartic proteinases. Replacing the Pro by L-pipecolic acid (2-piperidinecarboxylic acid) converted the substrate into an effective inhibitor of HIV-1 and HIV-2 proteinases with IC50 of approximately 1 microM. This compound showed a high degree of selectivity in that it did not inhibit cathepsin D and renin.  相似文献   

17.
Riggio M  Scudiero R  Filosa S  Parisi E 《Gene》2002,295(2):241-246
Aspartic proteinases are a group of endoproteolytic proteinases active at acidic pH and characterized by the presence of two aspartyl residues in the active site. They include related paralogous proteins such as cathepsin D, cathepsin E and pepsin. Although extensively investigated in mammals, aspartic proteinases have been less studied in other vertebrates. In a previous work, we cloned and sequenced a DNA complementary to RNA encoding an enzyme present in zebrafish liver. The sequence resulted to be homologous to a novel form of aspartic proteinase firstly described by us in Antarctic fish. In zebrafish, the gene encoding this enzyme is expressed only in the female liver, in contrast with cathepsin D that is expressed in all the tissues examined independently of the sex. For this reason we have termed the new enzyme liver-specific aspartic proteinase (LAP).Northern blot analyses indicate that LAP gene expression is under hormonal control. Indeed, in oestrogen-treated male fish, cathepsin D expression was not enhanced in the various tissues examined, but the LAP gene product appeared exclusively in the liver. Our results provide evidence for an oestrogen-induced expression of LAP gene in liver. We postulate that the sexual dimorphic expression of the LAP gene may be related to the reproductive process.  相似文献   

18.
Selective inhibition of enzymes involved in antigen processing such as cathepsin E and cathepsin D is a valuable tool for investigating the roles of these enzymes in the processing pathway. However, the aspartic protease inhibitors, including the highly potent pepstatin A (PepA), are inefficiently transported across the cell membrane and thus have limited access to antigen processing compartments. Previously described mannose-pepstatin conjugates were efficiently taken up by the cells via receptor mediated uptake. However, cells without mannose receptors are unable to take up these conjugates efficiently. The aim of the present study was to synthesize new cell-permeable aspartic protease inhibitors by conjugating pepstatin A with well-known cell penetrating peptides (CPPs). To achieve this, the most commonly used CPPs namely pAntp(43-58) (penetratin), Tat(49-60), and 9-mer of l-arginine (R9), were synthesized and coupled to pepstatin. The enzyme inhibitory properties of these bioconjugates and their cellular uptake into MCF7 (human breast cancer cell line), Boleths (EBV-transformed B-cell line) and dendritic cells (DC) were the focus of our study. We found that the bioconjugate PepA-penetratin (PepA-P) was the most efficient cell-permeable aspartic protease inhibitor tested, and was more efficient than unconjugated PepA. Additionally, we found that PepA-P efficiently inhibited the tetanus toxoid C-fragment processing in peripheral blood mononuclear cells (PBMC), primary DC and in primary B cells. Therefore, PepA-P can be used in studying the role of intracellular aspartic proteases in the MHC class II antigen processing pathway. Moreover, inhibition of tetanus toxoid C-fragment processing by PepA-P clearly implicates the role of aspartic proteinases in antigen processing.  相似文献   

19.
Inhibition of aspartic proteinases by alpha 2-macroglobulin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effect of alpha 2-macroglobulin, one of the major antiproteinases in the plasma of vertebrates, on the action of the aspartic proteinases chymosin, cathepsin D and cathepsin E towards peptide and protein substrates at pH 6.2 was examined. Activities towards protein substrates were blocked, thus demonstrating that alpha 2-macroglobulin can inhibit aspartic proteinases, in addition to serine proteinases, cysteine proteinases and metalloproteinases.  相似文献   

20.
Activation of the erythrocyte cathepsin E located on the cytoplasmic surface of the membrane in a latent form was studied in stripped inside-out membrane vesicles prepared from human erythrocyte membranes. Incubation of the vesicles at 40 degrees C at pH 4 resulted in increased degradation of the membrane proteins, especially band 3. This proteolysis was selectively inhibited by the inclusion of pepstatin (isovaleryl-Val-Val-statyl-Ala-statine) or H 297 [Pro-Thr-Glu-Phe(CH2-NH)Nle-Arg-Leu] in the incubation mixtures, indicating that cathepsin E, as the only aspartic proteinase in erythrocytes, is responsible for the proteolysis. Two potential active-site-directed inhibitors of aspartic proteinases, pepstatin and H 297, were used to prove the occurrence of the membrane-associated active enzyme. To minimize potential errors arising from non-specific binding, the concentrations of the inhibitors used in the binding assay (pepstatin, 5 x 10(-8) M; H 297, 1 x 10(-5) M) were determined by calibration for purified and membrane-associated cathepsin E. The inhibition of the membrane-associated cathepsin E by each inhibitor, which showed the binding of the inhibitor to the activated enzyme, was temperature- and time-dependent. The binding of each inhibitor to the enzyme on the exposed surface of the membrane at pH 4 was highly specific, saturable, and reversible. The present study thus provides the first evidence that cathepsin E tightly bound to the membrane is converted to the active enzyme in the membrane-associated form, and suggests that this enzyme may be responsible for the degradation of band 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号