首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1-enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.  相似文献   

3.
4.
5.
6.
7.
Phosphatidic acid added to the medium markedly elevated intracellular cyclic GMP content in cultured neuroblastoma N1E 115 cells. There was a significant elevation of cyclic GMP with 1 micrograms/ml and a maximum (70-fold) elevation with 100 micrograms/ml of phosphatidic acid. Other natural phospholipids did not increase, or increased only slightly, the cyclic GMP content in the cells. The elevation of cyclic GMP content by phosphatidic acid was absolutely dependent on extracellular calcium. Phosphatidic acid stimulated the influx of calcium into neuroblastoma cells 2- to 5-fold. The pattern of the calcium influx induced by phosphatidic acid was comparable to that of cyclic GMP elevation. The stimulation of calcium influx by phosphatidic acid was also observed in cultured heart cells, indicating that phosphatidic acid acts as a calcium ionophore or opens a specific calcium-gate in a variety of cell membranes. Treatment of neuroblastoma cells with phospholipase C increased 32Pi labeling of phosphatidic acid, stimulated the influx of calcium, and elevated the cyclic GMP content in the cells. Thus exogenous as well as endogenous phosphatidic acid stimulates the translocation of calcium across cell membranes and, as a consequence, induces the synthesis of cyclic GMP in the neuroblastoma cells.  相似文献   

8.
9.
10.
The cuboidal epithelial stem cell line Rat Mammary (Rama) 25 can differentiate in culture to droplet, alveolar-like cells that form domes, secrete small amounts of casein, and bind peanut lectin after treatment with neuraminidase. Differentiation to droplet cells is accelerated by dimethyl sulfoxide (DMSO). Morphologically intermediate states (gray and dark) which occur in the order: cuboidal----gray----dark----dark droplet----doming cells have been identified along this pathway by time-lapse cinematography. The dark and dark droplet states are associated with increased peanut lectin binding capacity whereas casein is secreted mainly by cells in domes. Cells in cultures containing low concentrations of DMSO (less than 56 mM) acquire droplets predominantly in the dark state, whereas with higher concentrations of DMSO droplet formation is seen mainly in the gray state. Kinetic analysis both from time-lapse films and conventional microscopy, shows that increasing the concentration of DMSO prolongs the time spent in the gray state, decreases the time of initial appearance of droplet cells, and increases their subsequent rate of formation, without detectable effects on the rates of the remaining morphological transitions. DMSO also reduces the average rate of DNA synthesis and increases the average cell cycle time, particularly in the second (and subsequent) cell cycles after its addition. However, neither droplet nor doming cells are terminally differentiated. Thus a linear sequence of morphological states exists between the Rama 25 stem cells and the alveolar-like or more probably alveolar bud cells in vitro, and DMSO accelerates the overall conversion predominantly by truncating one of the steps in this pathway.  相似文献   

11.
Ornithine decarboxylase (ODC), the first rate-limiting enzyme in the polyamine biosynthesis is one of the most rapidly degraded proteins in eukaryotic cells. Mammalian ODC is a notable exception to the widely accepted dogma that ubiquitination is always required for targeting a protein to degradation by the 26S proteasome. However, while it is well established that in mammalian cells degradation of ODC is ubiquitin independent, the requirement of ubiquitination for degradation of ODC in yeast cells remained undetermined. We have investigated ODC degradation in three mutant strains of Saccharomyces cerevisiae in which ubiquitin-dependent protein degradation activity is severely compromised. While yeast ODC was rapidly degraded in all these mutant strains the degradation of N-end rule substrates was inhibited. A mutant mouse ODC that fails to interact with Az was rapidly degraded in yeast cells but was stable in mammalian cells suggesting that interaction with a mammalian Az like yeast protein is not necessary for the degradation of ODC in yeast cells. Deletion analysis revealed that sequences from its unique N-terminus are involved in targeting yeast ODC to rapid degradation in yeast cells.  相似文献   

12.
Retinoic acid is considered to be the active metabolite of retinol, able to control differentiation and proliferation of epithelia. Retinoic acid biosynthesis has been widely described with the implication of multiple enzymatic activities. However, our understanding of the cell biological function and regulation of this process is limited. In a recent study we evidenced that milk xanthine oxidase (E.C. 1.17.3.2.) is capable to oxidize all-trans-retinol bound to CRBP (holo-CRBP) to all-trans-retinaldehyde and then to all-trans-retinoic acid. To get further knowledge regarding this process we have evaluated the biosynthetic pathway of retinoic acid in a human mammary epithelial cell line (HMEC) in which xanthine dehydrogenase (E.C. 1.17.1.4.), the native form of xanthine oxidase, is expressed. Here we report the demonstration of a novel retinol oxidation pathway that in the HMEC cytoplasm directly conduces to retinoic acid. After isolation and immunoassay of the cytosolic protein showing retinol oxidizing activity we identified it with the well-known enzyme xanthine dehydrogenase. The NAD+ dependent retinol oxidation catalyzed by xanthine dehydrogenase is strictly dependent on cellular retinol binding proteins and is inhibited by oxypurinol. In this work, a new insight into the biological role of xanthine dehydrogenase is given.  相似文献   

13.
Retinoic acid is considered to be the active metabolite of retinol, able to control differentiation and proliferation of epithelia. Retinoic acid biosynthesis has been widely described with the implication of multiple enzymatic activities. However, our understanding of the cell biological function and regulation of this process is limited. In a recent study we evidenced that milk xanthine oxidase (E.C. 1.17.3.2.) is capable to oxidize all-trans-retinol bound to CRBP (holo-CRBP) to all-trans-retinaldehyde and then to all-trans-retinoic acid. To get further knowledge regarding this process we have evaluated the biosynthetic pathway of retinoic acid in a human mammary epithelial cell line (HMEC) in which xanthine dehydrogenase (E.C. 1.17.1.4.), the native form of xanthine oxidase, is expressed. Here we report the demonstration of a novel retinol oxidation pathway that in the HMEC cytoplasm directly conduces to retinoic acid. After isolation and immunoassay of the cytosolic protein showing retinol oxidizing activity we identified it with the well-known enzyme xanthine dehydrogenase. The NAD+ dependent retinol oxidation catalyzed by xanthine dehydrogenase is strictly dependent on cellular retinol binding proteins and is inhibited by oxypurinol. In this work, a new insight into the biological role of xanthine dehydrogenase is given.  相似文献   

14.
15.
16.
17.
Resveratrol (trans-3,5,4'-trihydroxystilbene, Res) is a naturally occurring antioxidant found in grape berry skins and red wine. It has anti-inflammatory effects. In this study, we examined the effect of Res on the formation of phosphatidic acid (PA) and diglyceride (DG), in human neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine (fMLP) or by phorbol 12-myristate 13-acetate (PMA). We measured the masses of PA and DG by using a nonradioactive method. Our results showed that Res inhibited the formation of PA in a concentration dependent manner with an IC(50) value of 42.4 and 60.9 microM in fMLP- and PMA-stimulated cells, respectively. Res also suppressed the formation of phosphatidylethanol (PEt), thereby implying inhibition of phospholipase D (PLD) activity. In addition, Res inhibited the formation of both diacylglycerol (DAG) and ether-linked acylglycerol (EAG) induced by fMLP and by PMA. Our results suggest that Res inhibition of PLD activity may contribute to its anti-inflammatory effects.  相似文献   

18.
The simple structure of phosphatidic acid (PA) belies its complex biological functions as both a key phospholipid biosynthetic intermediate and a potent signaling molecule. In the latter role, PA controls processes including vesicle trafficking, actin dynamics, cell growth, and migration. However, experimental methods to decode the pleiotropy of PA are sorely lacking. Because PA metabolism and trafficking are rapid, approaches to accurately visualize and manipulate its levels require high spatiotemporal precision. Here, we describe recent efforts to create a suite of chemical tools that enable imaging and perturbation of PA signaling. First, we describe techniques to visualize PA production by phospholipase D (PLD) enzymes, which are major producers of PA, called Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation (IMPACT). IMPACT harnesses the ability of endogenous PLD enzymes to accept bioorthogonally tagged alcohols in transphosphatidylation reactions to generate functionalized reporter lipids that are subsequently fluorescently tagged via click chemistry. Second, we describe two light-controlled approaches for precisely manipulating PA signaling. Optogenetic PLDs use light-mediated heterodimerization to recruit a bacterial PLD to desired organelle membranes, and photoswitchable PA analogs contain azobenzene photoswitches in their acyl tails, enabling molecular shape and bioactivity to be controlled by light. We highlight select applications of these tools for studying GPCR–Gq signaling, discovering regulators of PLD signaling, tracking intracellular lipid transport pathways, and elucidating new oncogenic signaling roles for PA. We envision that these chemical tools hold promise for revealing many new insights into lipid signaling pathways.  相似文献   

19.
By use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, phosphatidic acid was found to be the main product of γ radiolysis of cardiolipin, phosphatidylinositol, and phosphatidylglycerol. It has been shown that γ irradiation of such glycolipids as cerebroside and galactosyl diglyceride leads to formation of ceramide and diglyceride, respectively. These findings, combined with those obtained earlier, allowed an assumption to be made that, owing to radiation-induced free radical fragmentation of lipids in their polar moiety, formation of signaling molecules can occur.  相似文献   

20.
RANKL plays an essential role in mammary gland development during pregnancy. However, the molecular mechanism by which RANK signaling leads to mammary gland development is largely unknown. We report here that RANKL stimulation induces phosphorylation of Id2 at serine 5, which leads to nuclear retention of Id2. In lactating Id2Tg; RANKL(-/-) mice, Id2 was not phosphorylated and was localized in the cytoplasm. In addition, in lactating Id2(S5A)Tg mice, Id2(S5A) (with serine 5 mutated to alanine) was exclusively localized in the cytoplasm of mammary epithelial cells (MECs), while endogenous Id2 was localized in the nucleus. Intriguingly, nuclear expression of Id2(S5A) rescued increased apoptosis and defective differentiation of MECs in RANKL(-/-) mice. Our results demonstrate that nuclear retention of Id2 due to RANK signaling plays a decisive role in the survival and differentiation of MECs during mammary gland development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号