首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cuticular sensory receptors that are found on the apex of the labium of hemipterans play an important role in their feeding behavior. In this study we describe the ultrastructure, number, and distribution of sensilla on the labium apex of the chinch bug, Blissus leucopterus leucopterus. Each apical field of sensilla on the labium contains 11 uniporous peg sensilla and one sensillum chaeticum. The uniporous peg sensilla are innervated by 4–5 bipolar neurons that send dendrites in the lumen of each peg. Three neurons are associated with each sensillum chaeticum, two neurons have dendrites in the lumen of the sensillum, and the third dendrite ends in a tubular body at the base of the sensillum. Behavioral tests that involve chemical blockage of the sensory receptors show the importance of the labial sensilla in feeding behavior. Both morphological and behavioral evidence indicate that the labial sensilla have a chemosensitive function.  相似文献   

2.
The structure of the sensory organs situated on palps and chelicerae of the quill mite Syringophilopsis fringilla (Fritsch, 1958) was examined with the use of scanning and transmitting electron microscopy. The tarsal segment of the palps bears 8 sensilla of three types: two contact chemo-mechanoreceptor sensilla, a single chemoreceptor (olfactory) sensillum, and five tactile mechanoreceptor sensilla. All other sensilla situated on basal palpal segments and on cheliceral stylets are represented exclusively by tactile mechanoreceptors. A proprioceptor sensillum was revealed in the movable digit of chelicerae; the modified cilia of dendrites of 5 sensory neurons of this sensillum run inside the inner non-sclerotized core of the stylet and end at different levels in its apical part, attaching to electron-dense rods connected with a sclerotized sheath of the stylet. The authors assume that the proprioceptor sensillum of the stylet detects the strength of the pressure of the stylet of the movable digit on the quill wall during its piercing, and palpal sensilla determine the optimal place for this process.  相似文献   

3.
The external ultrastructure of sensilla on the maxillary galea are investigated in Mamestra configurata and five other lepidopterous larvae using scanning electron microscopy. The galea and lacinia, comprising the mesal lobe of the maxilla, are either completely separate, fused, or incompletely fused in these species. The distal surface of the mesal lobe of all species examined bears two styloconic sensilla, three basiconic sensilla, and three trichoid sensilla, whereas the midventral wall of this lobe bears a campaniform sensillum. The latter sensillum is visible in only three of the six species examined. The styloconic and basiconic sensilla occupy a ventro anterior location, whereas the trichoid sensilla are positioned dorsoposteriorly. Interspecific comparisons of galeal size, as well as sensillar size, shape, and position are made for all species. The styloconic sensilla are the only sensillar type permeable to an aqueous solution of cobalt chloride when viewed by brightfield light microscopy in all species examined. Cobalt ions permeate through the terminal pore of each styloconic peg and percolate through the fenestrated fibrillar pore matrix, located directly below the pore. These ions permeate along the dendritic channel and accumulate in the adjacent sensillar sinus surrounding the peg and/or style by way of a presumably permeable dendritic sheath in all species, but to varying extents. The cuticular sidewall pores surrounding the terminal pore also appear to be permeable to cobalt ions in all the species examined. In most species examined, the styloconic sensilla are only minimally permeable to mercury ions. In these species, mercury ions permeate through the terminal pore, but become trapped within the plug of fenestrated fibrils within it. The sidewall pores are not permeable to mercury ions in any of the species examined. The styloconic sensilla are not permeable to lead ions in M. configurata or Malacosoma lutescens, the only species tested. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The Australian ‘little ash beetle’ Acanthocnemus nigricans (Coleoptera, Cleroidea, Acanthocnemidae) is attracted by forest fires. A. nigricans has one pair of unique prothoracic sensory organs and it has been speculated that these organs may play a role in fire detection. Each organ consists of a cuticular disc, which is fixed over an air-filled cavity. On the outer surface of the disc, about 90 tiny cuticular sensilla are situated. The poreless outer peg of a sensillum is 3–5 μm long and is surrounded by a cuticular wall. One ciliary sensory cell innervates the peg. As a special feature, the outer dendritic segment is very short already terminating below the cuticle. A massive electron-dense cylindrical rod, which most probably represents the hypertrophied dendritic sheath, extends through the cuticular canal connecting the tip of the outer dendritic segment to the peg. The dendritic inner segment and the soma are fused indistinguishably. Thin, leaflike extensions of glial cells deeply extend into that conjoint and considerably enlarged compartment which also contains large numbers of mitochondria. In summary, the sensilla of the sensory disc of A. nigricans represent a new type of insect sensillum of hitherto unknown function. The possible role of the prothoracic sensory organ in fire detection is discussed.  相似文献   

5.
Abstract. The apex of the larval antenna of the crane fly Nephrotoma suturalis has 6 cuticular sensilla that stained intensely black with silver nitrate, which indicates their porosity. The large sensory cone is innervated by 14 neurons and the 3 small, smooth surfaced, conical pegs have 4 neurons each. The small and large cylindrical sensilla with their smooth walls and pleated apices are innervated by 4 and 6 nerve cells, respectively. The 15 sensilla on the apex of the maxillary palp are all stained by silver nitrate. These sensilla are of five types: 7 type A sensilla with a smooth surface, a distinct apical pore, and 3 or 4 neurons; 2 type B sensilla with a smooth surface, many pores, and 5 neurons; 1 type C sensillum with a grooved surface, a large apical pore, smaller pores in the grooves, and 6 neurons; 3 type D sensilla with a smooth surface, a grooved apex that is elongated into a projection, and 4 neurons; 2 type E sensilla with many pores covering the surface, leaf-like appearance, and 4 neurons. The number and types of sensilla are similar to those in other nematocerous larvae, but in the many different forms of sensilla and the structure of the sensory cone, these tipulid larvae differ greatly from other larvae of lower Diptera.  相似文献   

6.
Summary The internal and external structure of the galeae of the adult red turnip beetle, Entomoscelis americana, was studied using SEM and TEM. The galea broadens from base to truncated tip and its sides are of thick, sculpted cuticle invested with pores and coarse spines. The tip is of thinner, flexible cuticle covered with 8–12 uniporous, blunt-tipped apical pegs and a single, aporous, sharply-pointed apical hair.The coarse spines are singly innervated probable mechanosensilla owing to the tubular body at the distal end of the dendrite. These sensilla likely act as tactile hairs monitoring galeal-effected movements of food particles into the functional mouth. The pores are associated with glands within the galea. The function of the presumed secretion is not known but may be to keep objects and dried saliva from sticking to the mouthparts.The apical pegs are innervated by five neurons, each producing a single dendrite. Four dendrites enter the single peg lumen and communicate with the terminal pore. The fifth differentiates into a tubular body that inserts into the peg base. These are typical insect contact chemosensilla that, because of their location, would taste incoming food.The apical hair has no pores but is innervated by two neurons, each extending a dendrite into the hair lumen in chemosensillar fashion. The sensory mode of this sensillum is unknown but is probably not mechanoor chemoreception. Many of its features, reminiscent of taste hairs, lead us to hypothesize that it represents a one-time chemosensillum recently modified to a new form and sensory mode.Because larval and adult E. americana share similar food plant requirements, we hypothesize that similarities will be seen in their mouthpart sensilla. Comparisons of the adults and larvae show the common features between their respective galeal taste hairs are only those of insect contact chemosensilla in general. However, the adult apical hair and the larval medial sensillum show striking specific structural similarities. We propose that these are true structural and functional homologues.  相似文献   

7.
Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents’ target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.  相似文献   

8.
At least five nonporous sensilla with inflexible sockets (npsensilla) occur on each antenna of both sexes of adult Rhodnius prolixus. Externally the sensillum appears as a short, rounded peg set into a pit surrounded by a depression. A very electron-dense material occurs in the peg lumen and the inner aspect of the pit. Filamentous extensions of this material radiate into the overlying outlets. Each sensillum is innervated by three neurons with unbranched dendrites. Two dendrites extend to the peg tip and distally are covered by a dendritic sheath. The portion of these dendrites within the sheath contains a large number of microtubules. The third dendrite terminates near the base of the dentritic sheath and partially wraps around the other two dendrites. Three sheath cells are associated with each sensillum. Based on similarities in structure with sensilla of known function it is probable that the np-sensilla of R. prolixus are thermo-/hygrosensilla responding to cold, dryness and wetness. The sensilla have a number of structural similarities with insect rectal sheath cells known to absorb atmospheric water by electroosmosis. Possibly this process leads to volumetric alterations of cuticular elements associated with the dendrites and ultimately to mechanotransduction.  相似文献   

9.
The head of Austroperipatus aequabilis bears five types of sensilla. which were examined by electron microscopy. They differ from each other in position, shape of outer sensory elements and cuticular socket structures. Thus, we distinguish sensilla with sensory hairs, sensilla with sensory bulbs, cone-shaped sensilla. sensilla with sensory bristles, and sensilla of the lips. They are composed of up to 15 cells, which can he separated into four cell types. The most frequent cell type is the bipolar receptor cell that occurs in all sensilla. The apical surface of this primary receptor cell is characterized by one or two partly branched cilia with a basal 9 × 2 + 0 pattern of microtubules. A modified bipolar receptor cell was found in all sensilla bearing a sensory peg except for the sensilla equipped with sensory bristles. The apical dendrite extends to a long pale process which exclusively contains mitochondria and single microtubules. In all sensilla examined in this study at least one supporting cell occurs which is characterized by parallel microvilli. An additional function of this cell type as a part of the stimulus-conducting system is possible. In the sensillum with a sensory bulb two kinds of supporting cells occur. A unique cell type with an upside down position has regularly been found in all sensilla bearing a sensory peg. Apart from the sensilla they also occur within the labial epidermis. Since most sensilla contain several different receptor cells, they can be considered as complex sense organs. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

10.
Summary The embryonic development of antennal coeloconic sensilla was studied at four stages between 132 and 252 h after oviposition in Locusta migratoria. Initially the anlagen of the sensilla consist of 2–4 sensory cells and 3 enveloping cells. Two additional cells contribute later to the formation of socket and pit. The dendritic outer segments of the sensory cells elongate before the trichogen process grows out (ecdysis type I) with exception of one sensory cell in anlagen of poreless (np) sensilla. Other differences between np and double-walled wall pore (dw wp) sensilla are not visible until at least about 220 h after oviposition. Molting, which was studied in four stages, follows ecdysis type I in both sensillum types. The fourth enveloping cell maintains its tight connection to the socket of the sensillum even after apolysis. Its apical portion is torn off and shed together with the old cuticle. The electron-dense material between the dendritic sheath and the cuticular wall of the peg in np sensilla, which is regarded important for stimulus transmission, is not deposited during retraction of the trichogen cell. The concentric walls and spoke channels characteristic of dw wp sensilla result from deposition of cuticular material around wedge-shaped projections of the trichogen cell. The typical trilaminar 15 nm cuticulin layer is produced only on the ridges of these sensilla. The first cuticular lining of the spoke channels is only 7 nm thick and of a different structure. A flocculent material surrounds the outgrowing trichogen process. It is continuous with the filling of the spoke channels and can thus be considered as component of the stimulus-transmitting material in the functioning intermolt dw wp sensilla.  相似文献   

11.
The sensilla ampullacea on the apical antennomere of the leaf-cutting ant Atta sexdens were investigated regarding both their responses to CO2 and their ultrastructure. By staining the sensillum during recording, we confirmed that the sensilla ampullacea are responsible for CO2 perception. We showed that the sensory neurons of the sensilla ampullacea are continuously active without adaptation during stimulation with CO2 (test duration: 1 h). This feature should enable ants to assess the absolute CO2 concentration inside their nests. Sensilla ampullacea have been found grouped mainly on the dorso-lateral side of the distal antennal segment. Scanning and transmission electron microscopic investigations revealed that the external pore opens into a chamber which connects to the ampulla via a cuticular duct. We propose protection against evaporation as a possible function of the duct. The ampulla houses a peg which is almost as long as the ampulla and shows cuticular ridges on the external wall. The ridges are separated by furrows with cuticular pores. The peg is innervated by only one sensory neuron with a large soma. Its outer dendritic segment is enveloped by a dendritic sheath up to the middle of the peg. From the middle to the tip numerous dendritic branches (up to 100) completely fill the distal half of the peg. This is the first report of a receptor cell with highly branched dendrites and which probably is tuned to CO2 exclusively.  相似文献   

12.
Summary A sensillum in a narrow pit with a broad cuticular collar, located in a sensillum field on the 12th segment of the antennae of Carausius morosus, was investigated electrophysiologically. After marking, it was also examined with the transmission and the scanning electron microscopes. The number of sensory cells within the sensillum varies between three and four. One cell, present in half of the sensilla studied, exhibits a simple cilium of the 9×2+0 type as outer dendritic segment. The outer segment of a second unit is noteworthy in that it divides near its ciliary base into two branches. These flatten to form lamellae, then fold and wrap around each other. The remaining two sensory cells bear unbranched or bifurcate outer segments which contain densely packed microtubules. Only these outer segments extend into the cuticular peg; the others end beneath its base. The cuticular peg is devoid of pore systems. Electrophysiological recording yielded evidence that a cold, a dry and a moist air receptor are present. The fourth unit did not respond clearly to stimulation.Supported by the Deutsche Forschungsgemeinschaft (Al 56/6)Research Fellow of the Alexander von Humboldt Foundation  相似文献   

13.
Lepidopteran larvae possess two pairs of styloconic sensilla located on the maxillary galea. These sensilla, namely the lateral and medial styloconic sensilla, are each comprised of a smaller cone, which is inserted into a style. They are thought to play an important role in host-plant selection and are the main organs involved in feeding. Ultrastructural examination of these sensilla of fifth instar Lymantria dispar (L.) larvae reveal that they are each approximately 70 um in length and 30 um in width. Each sensillum consists of a single sensory peg inserted into the socket of a large style. Each peg bears a slightly subapical terminal pore averaging 317 nm in lateral and 179 nm in medial sensilla. Each sensillum houses five bipolar neurons. The proximal dendritic segment of each neuron gives rise to an unbranched distal dendritic segment. Four of these dendrites terminate near the tip of the sensillum below the pore and bear ultrastructural features consistent with contact chemosensilla. The fifth distal dendrite terminates near the base of the peg and bears ultrastructural features consistent with mechanosensilla. Thus, these sensilla each bear a bimodal chemo-mechanosensory function. The distal dendrites lie within the dendritic channel and are enclosed by a dendritic sheath. The intermediate and outer sheath cells enclose a large sensillar sinus, whereas the smaller ciliary sinus is enclosed by the inner cell. The neurons are ensheathed successively by the inner, intermediate, and outer sheath cells.  相似文献   

14.
Summary The thermo-/hygrosensitive sensilla styloconica of the silk moth Bombyx mori were studied using cryofixation and freez-substitution. These sensilla are characterized by a short poreless cuticular peg, which is double-walled in its distal part. The central lumen is innervated by the unbranched outer dendritic segments of the two presumed hygroreceptor cells. The presumed thermoreceptor cell displays lamellae below the peg base. Within the peg lumen, the dendrites are surrounded by the peridendritic dense coat and the lowdensity matrix. Below the peg base, these structures continue as the dendrite sheath, which is separated from the outer sensillum-lymph space by a layer of the trichogen cell. The central lumen, therefore, is only connected with the inner sensillum-lymph space, but the appearance of the low-density matrix, within the peg, differs from that of the sensillum lymph below the peg. In moist-adapted (24 h) sensilla, the two hygroreceptor dendrites invade the peg for three quarters and one half of its length, respectively, and fill the cross-sectional area of the lumen by 50–80%. In dry-adapted (24 h) sensilla, the dendrites terminate more proximally and fill the cross-section by 35%. The volume of the low-density matrix increases under dry conditions and decreases under humid conditions. At intermediate ambient humidity, the morphology of these sensilla is halfway between the dry-adapted and the moist-adapted state. The effect of dry-adaptation is reversible, so that sensilla that were first dry-adapted and then moist-adapted (24 h each) before cryofixation cannot be distinguished from moist-adapted sensilla. The reduction of the exposed length of the dendrites is interpreted as a shift of the working range of the receptors and/or protection against desiccation. The current theories of sensory transduction in hygroreceptors, in particular the hygrometer and evaporimeter hypotheses, are discussed with respect to the present findings.  相似文献   

15.
The ultramorphology of the antennae and mouthparts of the adult Loxocephala perpunctata Jacobi was studied through a scanning electron microscope. Seven types of sensilla were found on antennomeres, including a Böhm bristle on the scape, sensillum trichoideum and plaque organ on the pedicel, two subtypes of sensilla chaetica and two subtypes of sensilla campaniformia on these two antennomeres; and Bourgoin's organ with sensory pegs and sensilla basiconicum on the basal bulb of the flagellum. The mouthparts of L. perpunctata are of the typical piercing-sucking type, similar to mouthparts found in other hemipteran insects. In general, six types of sensilla (i.e., four subtypes of sensilla chaetica, sensillum basiconicum, subapical labial sensillum, uniporous peg-like sensillum, multiporous peg-like sensillum and two subtypes of bristle-like sensilla) were detected on different locations of the labium, with the last three, and numerous cuticular processes, present on the labial tip. The potential functions of these sensilla are discussed.  相似文献   

16.
口器感器在昆虫取食活动中起着重要作用, 但蚊蝎蛉成虫口器上感器的种类和形态迄今未见报道。我们利用扫描电子显微镜, 观察了中华蚊蝎蛉Bittacus sinensis Walker成虫口器上的感器。结果显示: 中华蚊蝎蛉口器上共有8种感器, 分别为锥形、毛形、刺形、指形、掌状、钟形、柱状感器及Böhm氏鬃毛, 主要集中于内唇、 下颚须以及下唇须上。锥形感器和刺形感器数量最多; 毛形感器主要在下颚轴节、 茎节和下唇的亚颏和前颏有分布; 钟形感器和Böhm氏鬃毛只存在于下唇须和下颚须上。下颚须端节和下唇须端节的感器种类相同, 以锥形感器为主。高度骨化的上颚以及下颚内颚叶与外颚叶上未发现感器分布。简要讨论了口器感器在昆虫分类中的意义。  相似文献   

17.
The antenna of fourth instar larvae of Aedes aegypti has one peg organ of a basiconic type innervated by four neurons. The dendrites are ensheathed to near their terminations at the peg tip by an electron-dense dendritic sheath and by a cuticular sheath. They have easy communication by diffusion with the external environment only at the tip through a peripheral ensheathing membrane and six slit-channels. One of the dendrites resembles a tubular body proximally and may be mechanoreceptive. The peg generally appears to be a contact chemoreceptor. There are three antennal hairs of a typical sensillum trichodeum type innervated at the base by one neuron each. An intricate terminal mechanism at the insertion of the dendrite in the hair is described. These are believed to be tactile hairs. There are also three antennal hairs each innervated by two neurons. The dendrite from one terminates at the base similar to that of a tactile hair, and is believed to function in a similar mechanoreceptive manner. The dendrite from the second neuron extends naked along the length of the hair lumen. It is believed to be primarily chemoreceptive, in a slow-acting general sensory function. In all the sensilla there appear to be secretions produced in the junction body regions of the dendrites, and there is evidence for accumulation of secretory materials in the dendritic tips in some of the sensilla.  相似文献   

18.
The antennae are a critically important component of the ant’s highly elaborated chemical communication systems. However, our understanding of the organization of the sensory systems on the antennae of ants, from peripheral receptors to central and output systems, is poorly understood. Consequently, we have used scanning electron and confocal laser microscopy to create virtually complete maps of the structure, numbers of sensory neurons, and distribution patterns of all types of external sensilla on the antennal flagellum of all types of colony members of the carpenter ant Camponotus japonicus. Based on the outer cuticular structures, the sensilla have been classified into seven types: coelocapitular, coeloconic, ampullaceal, basiconic, trichoid-I, trichoid-II, and chaetic sensilla. Retrograde staining of antennal nerves has enabled us to count the number of sensory neurons housed in the different types of sensilla: three in a coelocapitular sensillum, three in a coeloconic sensillum, one in an ampullaceal sensillum, over 130 in a basiconic sensillum, 50–60 in a trichoid-I sensillum, and 8–9 in a trichoid-II sensillum. The basiconic sensilla, which are cuticular hydrocarbon-receptive in the ant, are present in workers and unmated queens but absent in males. Coelocapitular sensilla (putatively hygro- and thermoreceptive) have been newly identified in this study. Coelocapitular, coeloconic, and ampullaceal sensilla form clusters and show biased distributions on flagellar segments of antennae in all colony members. The total numbers of sensilla per flagellum are about 9000 in unmated queens, 7500 in workers, and 6000 in males. This is the first report presenting comprehensive sensillar maps of antennae in ants.  相似文献   

19.
The fine structure of the basiconica sensilla situated on the posterior part of trochanters in Campodea sensillifera (Diplura : Campodeidea) reveals that they are probably olfactory and mechano-sensitive setae. Each sensillum is composed of one sensory axis made of 3 dendrites ensheathed by 3 cells (thecogen, trichogen and tormogen); one outer segment ends by a tubular corper without connection with the cuticular layer. The setae are generally racket-shaped. The epicuticular layer of the expanded part is perforated by a lattice of numerous slits, which communicate with underlying canals. The ciliary structures and apex of the tormogen cell are eliminated just before ecdysis. The ciliary microtubules are present in the cavity of the new sensillum, but after ecdysis the microtubules persist only at the lower part of the peduncle. An ecdysial canal appears at the tip of the sensillum.  相似文献   

20.
Haller's organ in A. tridentatus consists of a capsule and an anterior group of sensilla. The capsule is the hollow in the cuticle on the dorsal surface of the first tarsus, where 4 pored hairs of olfactory sensilla are situated under the cover of the roof, formed by an anostomosis of the upper brunches of pleomorphs (capsule's bottom non-sensory cuticular outgrowths). The canal of the accessory ampullaceous sensillum opens in a capsule near the bottom. The anterior group of sensilla consists of two parts: proximal part, containing pored grooved and thin hairs, is homologous to the anterior grouf of ixodid ticks, and distal one which has no homologues in ixodids. Fine structure of all the sensilla in the mentioned parts of Haller's organ is described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号