首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When cultures of WI-38 human diploid fibroblasts reach high cell densities, they cease to proliferate and enter a viable state of quiescence. WI-38 cells can remain in this quiescent state for long periods of time; however, the longer the cells remain growth arrested, the more time they require to leave G0, progress through G1, and enter S after stimulation with fresh serum. The experiments presented here compare the response of long-term quiescent WI-38 cells (stimulated 26 days after plating) and short-term quiescent WI-38 cells (stimulated 12 days after plating) to treatment with a variety of individual purified growth factors instead of whole serum. Our results show that the qualitative and quantitative growth factor requirements necessary to stimulate G1 progression and entry into S were the same for both short- and long-term quiescent WI-38 cells, in that the same defined medium (supplemented with epidermal growth factor [EGF], recombinant human insulin-like growth factor 1 [IGF-1], and dexamethasone [DEX]) stimulated both populations of cells to proliferate with the same kinetics and to the same extent as serum. However, the long-term quiescent WI-38 cells were found to exhibit a difference in the time during which either serum or these individual growth factors were required to be present during the prereplicative period. We believe that this difference may be the cause of the prolongation of the prereplicative phase after stimulation of long-term density-arrested WI-38 cells.  相似文献   

2.
A number of cell culture model systems have been used to study the regulation of cell cycle progression at the molecular level. In this paper we describe the WI-38 cell long-term quiescence model system. By modulating the length of time that WI-38 cells are density arrested, it is possible to proportionately alter the length of the prereplicative or G-1 phase which the cell traverses after growth factor stimulation in preparation for entry into DNA synthesis. Through studies aimed at understanding the cause and molecular nature of the prolongation of the prereplicative phase, we have determined that gene expression plays an important role in establishing growth factor “competence” and that once the cell becomes “competent” there is a defined order to the molecular events that follow during the remainder of G-1. More specifically, we have determined that the prolongation represents a delay in the ability of long term quiescent cells to become fully “competent” to respond to growth factors which regulate progression through G-1 into S. This prolongation appears to occur as a result of changes during long term quiescence in the ability of immediate early G-1 specific genes (such as c-myc) to activate the expression of early G-1 specific genes (such as ornithine decarboxylase). While ODC is the first and thus far only growth associated gene identified as a target of c-myc (and the Myc/Max protein complex), it is likely that further studies in this model system will reveal other early G-1 growth regulatory genes. We anticipate that future follow-up studies in this model system will provide additional valuable information abuot the function of growth-regulatory genes in controlling growth factor responsiveness and cell cycle progression.  相似文献   

3.
WI-38 cells, density arrested for short periods of time, can be stimulated to re-enter the cell cycle by epidermal growth factor (EGF) alone. However, cells density arrested for longer periods have a prolonged prereplicative phase when serum stimulated and cannot be stimulated by EGF alone. Radio-ligand binding studies performed on WI-38 cells showed that actively growing cells bind [125I]EGF at relatively low levels that increase to a maximum as the cells become contact inhibited. As the cells enter a state of deeper quiescence, EGF binding falls to one-third to one-fifth the short-term growth arrested levels, remaining constant thereafter. The EGF-receptor complexes internalize more slowly in long-term growth arrested cells, and the rate of ligand association to the receptor is lower than short-term growth arrested cells. The amount of EGF receptor protein in lysates of equal numbers of both short- and long-term quiescent cells remains the same. These results suggest that the failure of long-term growth arrested cells to respond to EGF is not due to dramatic changes in the amount of receptor protein during prolonged quiescence but more likely to an alteration in the ability of these receptors to bind ligand and/or activate the EGF signal transduction pathway. © 1993 Wiley-Liss, Inc.  相似文献   

4.
5.
Some events in the prereplicative phase of WI-38 human diploid fibroblasts stimulated to proliferate are found to be a function of the length of time the cells have been quiescent. At 5 days after plating, when the cells first become confluent, the prereplicative phase upon stimulation by a nutritional change is relatively short, DNA synthesis begins at 8 h after stimulation, and there is no increase in chromatin template activity. At 9 days after plating the prereplicative phase of stimulated cells is lengthened to 14 h and there is an increase in chromatin template activity within 1 h of stimulation. Finally, in 18-day cells, the prereplicative phase is lengthened even further to 20 h, and there is a lag after stimulation before the increase in chromatin template activity. It is proposed that confluent WI-38 cells initially arrest in G 1, subsequently pass into G 0, and continue to go deeper into G 0 as they remain quiescent.  相似文献   

6.
Lithium interferes with the responses of neural and secretory cells to calcium-mobilizing agonists by blocking the generation of phospholipase C-dependent second messengers. However, the mechanism by which lithium stimulates the proliferation of other cells in response to agonists that do not activate phospholipase C remains obscure. We investigated the pathways that mediate the mitogenic action of lithium on WI-38 cells in a defined, serum-free medium. Lithium, like dexamethasone (Dex), potentiated DNA synthesis in response to the combination of insulin+epidermal growth factor (EGF) (+50%), but not in response to either growth factor alone or with Dex. As in the case of Dex, lithium could be added as late as 8 h following stimulation of quiescent cells by insulin+EGF without loss of potentiating activity. While DNA synthesis in control cultures was essentially complete by 24 h, lithium and Dex stimulated "late" DNA synthesis (24-30 h) 10-fold and 5-fold, respectively. The potentiating activity of Dex, but not that of lithium, was blocked by the specific glucocorticoid receptor antagonist, RU486. Both lithium and Dex stimulated log-phase growth, but only Dex increased saturation density. These data indicate that both lithium and Dex recruit into the cell cycle a subpopulation of cells with a longer mean prereplicative phase (G1). The effect of lithium on DNA synthesis in WI-38 cells may be mediated by the glucocorticoid response pathway at some point distal to activation of the glucocorticoid receptor, or by an independent mechanism that can be switched on late in G1.  相似文献   

7.
WI-38 cells can remain quiescent for long periods of time and still be induced to reenter the cell cycle by the addition of fresh serum. However, the longer these cells remain growth arrested, the more time they require to enter S phase. This prolongation of the prereplicative phase has been localized to a point early in G1, after the induction of “immediate early” G1 genes such as c-fos and c-jun but before maximal expression of “early” G1 genes such as ornithine decarboxylase (ODC). Understanding the molecular basis for ODC mRNA induction can therefore provide information about the molecular events which regulate the progression of cells out of long-term quiescence into G1 and subsequently into DNA synthesis. Studies utilizing electrophoretic mobility shift assays (EMSA) of nuclear extracts from short- and long-term quiescent WI-38 cells identified a region of the human ODC promoter at ?491 bp to ?474 bp which exhibited a protein binding pattern that correlated with the temporal pattern of ODC mRNA expression. The presence of a CACGTG element within this fragment, studies with antibodies against c-Myc and Max, the use of purified recombinant c-Myc protein in the mobility shift assay, and antisense studies suggest that these proteins can specifically bind this portion of the human ODC promoter in a manner consistent with growth-associated modulation of the expression of ODC and other early G1 genes following prolonged quiescence. These studies suggest a role for the c-Myc/Max protein complex in regulating events involved in the progression of cells out of long-term quiescence into G1 and subsequently into S. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
Three different receptor tyrosine kinases, epidermal growth factor (EGF), c-erbB-2/neu, and platelet-derived growth factor (PDGF) receptors, have been found to be present in the mouse mammary epithelial cell line HC11. We have investigated the consequences of receptor activation on the growth and differentiation of HC11 cells. HC11 cells are normal epithelial cells which maintain differentiation-specific functions. Treatment of the cells with the lactogenic hormones glucocorticoids and prolactin leads to the expression of the milk protein beta-casein. Activation of EGF receptor has a positive effect on cell growth and causes the cells to become competent for the lactogenic hormone response. HC11 cells respond optimally to the lactogenic hormone mixture and synthesize high levels of beta-casein only if they have been kept previously in a medium containing EGF. Transfection of HC11 cells with the activated rat neuT receptor results in the acquisition of competence to respond to the lactogenic hormones even if the cells are grown in the absence of EGF. The activation of PDGF receptor, through PDGF-BB, also stimulates the growth of HC11 cells. Cells kept only in PDGF do not become competent for lactogenic hormone induction. The results show that activation of the structurally related EGF and c-erbB-2/neu receptors, but not the PDGF receptor, allows the HC11 cells to subsequently respond optimally to lactogenic hormones.  相似文献   

10.
KB cells respond to insulin and insulin-like growth factor I (IGF-I) in a closely similar way (induction of membrane ruffling, stimulation of pinocytosis, and amino acid transport) but respond to epidermal growth factors (EGF) in a similar but distinct way. In the KB cells, using phosphotyrosine-specific antibody we have found that: the receptors for insulin (beta subunit), IGF-I (beta subunit), and EGF undergo tyrosine phosphorylation as early as 10 s after addition of their respective ligands; a 185-kDa protein is rapidly (less than 10 s) tyrosine phosphorylated by insulin and IGF-I through their respective receptor kinases but not EGF; tyrosine phosphorylation of a 190-kDa glycoprotein is rapidly (less than 10 s) induced by EGF through EGF receptor kinase; and tyrosine phosphorylation of a 240-kDa protein is stimulated within 30 s by all three growth factors. These patterns of tyrosine phosphorylation could be causally related to biological responses induced by the three growth factors.  相似文献   

11.
Confluent quiescent monolayers of aneuploid and euploid cells in culture can be stimulated to proliferate by appropriate nutritional changes. In confluent monolayers of WI-38 human diploid fibroblasts the uptake of cycloleucine is increased three hours after these cells are stimulated to proliferate by a change of medium plus 10% serum. No changes in the uptake of cycloleucine are observed in logarithmically-growing WI-38 cells exposed to fresh medium plus 10% serum, or in WI-38 confluent monolayers in which the conditioned medium has been replaced by fresh medium with 0.3% serum (a change that does not cause stimulation of cellular proliferation in WI-38 cells). In 3T6 cells in the stationary phase stimulated to proliferate by nutritional changes, there is a prompt increase in the uptake of cycloleucine, within one hour after stimulation of cell proliferation. Similar results were obtained with stationary 2RA cells which are SV-40 transformed WI-38 fibroblasts. In addition, chromatin template activity which is known to increase in the early stages after stimulation of confluent WI-38 cells, was unchanged in confluent 3T6 or 2RA cells stimulated to proliferate. These results show that at least two of the very early biochemical events occurring in response to stimulation of cell proliferation are different in WI-38 diploid cells and in aneuploid 2RA or 3T6 cells. It is proposed that WI-38 cells in the stationary phase are arrested in the G0 phase of the cell cycle, while 2RA and 3T6 cells are arrested in the G1 phase.  相似文献   

12.
DNA synthesis and cell division are markedly reduced in confluent mono-layers of WI-38 diploid fibroblasts, but resume again if the depleted medium is replaced by fresh medium containing 10% fetal calf serum. If the cells are kept quiescent for prolonged periods of time after confluence (1 or 2 weeks), the fraction of cells that can be stimulated to proliferate by fresh serum decreases and the length of the prereplicative phase increases. The template activity of isolated nuclei decreases with increasing time of quiescence, and parallel changes occur in chromatin as evidenced by circular dichroism spectra and capacity to bind the intercalating dye, ethidium bromide. When WI-38 cells are stimulated to proliferate after prolonged quiescence, the increase in template activity of nuclei is delayed by several hours in comparison to cells stimulated after short periods of quiescence. Two distinct steps, both requiring serum, can be identified in the prereplicative phase of cells stimulated to proliferative after prolonged quiescence. We interpret the results as indicating that, during prolonged quiescence, WI-38 fibroblasts go into a deeper GO state from which they can be rescued only after prolonged stimulation. In this respect, prolonged quiescence may bear some resemblance to the process of aging.  相似文献   

13.
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.  相似文献   

14.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

15.
Tyrosine kinase inhibitors: a new approach for asthma   总被引:7,自引:0,他引:7  
  相似文献   

16.
Epidermal growth factor (EGF) and transforming growth factor alpha bind to a common receptor at the cell surface. Both the affinity and the tyrosine protein kinase activity of the receptor are regulated by exogenous factors, such as platelet-derived growth factor. A protein kinase C-dependent (Ca2+/phospholipid-dependent enzyme) and independent regulatory mechanism have been described. The protein kinase C-dependent mechanism results in the inhibition of the affinity and tyrosine kinase activity of the EGF receptor. We describe in this report an alternative mechanism of regulation of the receptor that is mediated by sphingosine. Treatment of WI-38 human fetal lung fibroblasts with 5 microM sphingosine for 2 min at 37 degrees C caused a marked increase in the affinity of the EGF receptor. Similar results were obtained when isolated plasma membranes prepared from these cells were incubated with sphingosine. A stimulation of the EGF receptor tyrosine protein kinase activity was also observed after sphingosine-treatment of plasma membranes. Sphingosine caused a decrease in the Km for ATP and an increase in the Vmax for the tyrosine phosphorylation of a synthetic peptide substrate. Control experiments demonstrated that these actions of sphingosine were not secondary to the inhibition of protein kinase C. These data indicate that sphingosine causes the functional conversion of the EGF receptor into an activated state that expresses both a high affinity for EGF and an increased tyrosine kinase activity. We conclude that sphingosine is a bioactive molecule in human fibroblasts.  相似文献   

17.
Although peroxynitrite appears to contribute to neuronal dysfunction in several neurodegenerative disorders, little is known about how peroxynitrite affects cellular signaling processes. This study investigated if peroxynitrite affects the mitogen-activated protein kinases, extracellular-regulated kinases 1 and 2 (ERK1/2) and p38. Exposure of PC12 cells to 500 microM peroxynitrite activated ERK1/2 and p38 within 5 min and this was followed by gradual decreases in activation over the next 25 min. Activation of ERK1/2 by peroxynitrite was mediated by activation of the epidermal growth factor (EGF) receptor in a calcium/calmodulin-dependent kinase II- and src family tyrosine kinase-dependent manner, as it was blocked by the selective EGF receptor inhibitor AG1478, by KN62, an inhibitor of calcium/calmodulin-dependent kinase II, and by PP1, a src family tyrosine kinase inhibitor. Activation of p38 by peroxynitrite was independent of the EGF receptor, required activation of calcium/calmodulin-dependent kinase II and src family tyrosine kinases, and was modulated by nerve growth factor (NGF) in a time-dependent manner. Pretreatment with NGF (2 h) attenuated, whereas cotreatment with NGF potentiated, peroxynitrite-induced activation of p38. Thus, peroxynitrite activates ERK1/2 and p38, activation of EGF receptors, calcium/calmodulin-dependent kinase II, and src family tyrosine kinases participate in these signaling responses to peroxynitrite, and peroxynitrite- and NGF-induced signaling activities converge on p38.  相似文献   

18.
Aim: We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. Methods: The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. Results: All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in μg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. Discussion: A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.  相似文献   

19.
N Chiu  R Baserga 《Biochemistry》1975,14(14):3126-3132
Quiescent confluent monolayers of WI-38 fibroblasts were stimulated to proliferate by either adding 10% fetal calf serum or by trypsinization and replating at lower density. The length of the prereplicative phase was 12 hr after serum stimulation and 18 hr after trypsinization and replating at lower density. Nuclei were isolated from WI-38 cells at different time intervals after either type of stimulation and their template activity, circular dichroism spectra, and ability to bind ethidium bromide were investigated. All these parameters were similarly increased after either type of stimulation. However, these changes, like the onset of DNA synthesis, were delayed 6 hr in cells trypsinized and replated at lower density. While there were no detectable changes in nuclear protein content after serum stimulation, at least 40% of nuclear protein, mostly nonhistone chromosomal proteins, were lost after trypsinization. The amount of nuclear proteins returned to prestimulation levels only 6-8 hr after replating. These data seem to suggest that nonhistone chromosomal proteins lost by trypsinization are essential for the entrance of WI-38 cells into the "prereplicative phase".  相似文献   

20.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号