首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
2.
We have examined the expression of the transformed phenotype in a series of clonal lines of NIH/3T3 cells transfected with the human c-Ha-rasVal 12 oncogene and the neomycin phosphotransferase gene. Cells from individual transformed foci were cloned and subjected to detailed analyses of the ras sequences. Three clones were found that expressed approximately one, 2–4, or 4–8 copies of the human c-ras oncogene, respectively. A fourth clone had multiple copies of the transfected sequences, and expressed abundant c-Ha-ras RNA. Analysis of the tranformed phenotype of various clones indicated that cells expressing low levels of mutant c-Ha-ras had lost some of their extracellular fibronectin network, and were barely altered in their cytoskeleton. In contrast, cells expressing abundant c-Ha-ras had lost both their actin and fibronectin networks and showed an increase in plasminogen activator activity. Cells with amplified c-Ha-rasVal 12 grew better in low serum, formed large colonies in soft agar and showed enhanced activity of ornithine decarboxylase, the rate-controlling enzyme in polyamine biosynthesis. These results show that the dosage level of the mutant oncogene makes a significant contribution to the transformed phenotype of c-Ha-ras oncogene-transformed cells.  相似文献   

3.
4.
Although the role of several protooncogenes, including sis, myc, and myb in the regulation of growth and differentiation of vascular cells has been examined in some detail, limited information is available on the contribution of ras genes to these processes. In the present studies the influence of oncogenic ras transfection on the phenotypic expression of rat aortic smooth muscle cells (SMCs) was examined. Cultured rat aortic SMCs during early passage (P4) were transfected by lipofection with c-Ha-rasEJ in a pSV2 neo vector or with pSV2 neo vector alone. Stable transfectants were selected in G418 over a 6-week period. Oncogene-transfected cells (ras-LF-1) exhibited differences in morphology and growth pattern relative to vector controls (neo-LF-1), or naive SMCs, including the development of prominent processes and the appearance of focal cellular arrangements giving rise to latticelike structures. Southern analysis revealed multiple integration of oncogenic ras in ras LF-1 cells. Transfection of c-Ha-rasEJ was associated with a twofold increase in p21 levels relative to pSV2 vector controls demonstrating that exogenous ras was expressed in these cells. Overexpression of ras p21 afforded SMCs a lower serum requirement for growth compared to vector controls, anchor-age independent growth on soft agar, and acquisition of epidermal growth factor (EGF) responsiveness. Stimulation of serum-deprived SMCs with 5% fetal bovine serum (FBS) increased steady-state levels of c-Ha-ras mRNA in both ras-LF-1 and neo-LF-1 but ras induction was more pronounced in ras-transfected cells. α-smooth muscle (SM) actin gene expression was markedly reduced in ras-transfected cells relative to vector controls. These results show that transfection of c-Ha-rasEJ into aortic SMCs induces an altered phenotypic state characterized by alterations in growth factor-related signal transduction and tumorigenic potential. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Abstract

To evaluate the base-pairing properties and mutagenicity of deoxyxanthosine in DNA, the modified base was incorporated into a synthetic c-Ha-ras gene and a DNA transfection experiment was done. The ras gene containing deoxyxanthosine showed very high focus-forming activity. Analysis of the genes from transformants showed almost exclusively a transition of G to A. These results indicate that dTMP was preferentially incorporated at the site opposite to deoxyxanthosine, and deoxyxanthosine can induce G to A transitions in mammalian cells.  相似文献   

6.
Cytosine methylation changes (hyper- or hypomethylation) in centromeric and telomeric sequences were observed in all three studied rice introgression lines containing DNA from wild rice, Zizania latifolia Griseb. The changed genomic Southern hybridization patterns were complex and non-concordant between a pair of isoschizomers (HpaII/MspI) digests, indicating methylation modifications at both the inner and outer cytosines of the CCGG sites. The changed patterns were inherited through generations. Possible mechanism for the methylation changes and their potential implications for the phenotypic variation and genome organization are discussed.  相似文献   

7.
While specific genes are hypermethylated in the genome of cancer cells, overall methylcytosine content is often decreased as a consequence of hypomethylation affecting many repetitive sequences. Hypomethylation is also observed at a number of single-copy genes. While global hypomethylation is highly prevalent across all cancer types, it often displays considerable specificity with regard to tumor type, tumor stage, and sequences affected. Following an overview of hypomethylation alterations in various cancers, this review focuses on 3 hypotheses. First, hypomethylation at a single-copy gene may occur as a 2-step process, in which selection for gene function follows upon random hypo methylation. In this fashion, hypomethylation facilitates the adaptation of cancer cells to the ever-changing tumor tissue microenvironment, particularly during metastasis. Second, the development of global hypomethylation is intimately linked to chromatin restructuring and nuclear disorganization in cancer cells, reflected in a large number of changes in histone-modifying enzymes and other chromatin regulators. Third, DNA hypomethylation may occur at least partly as a consequence of cell cycle deregulation disturbing the coordination between DNA replication and activity of DNA methyltransferases. Finally, because of their relation to tumor progression and metastasis, DNA hypomethylation markers may be particularly useful to classify cancer and predict their clinical course.  相似文献   

8.
Since oxygen free radicals are believed to play an important role in cartilage degradation, we studied the effects of these radicals generated by the hypoxanthine-xanthine oxidase system on rabbit articular chondrocytes in culture. Among the damages induced by these radicals, cell proliferation inhibition and G2 arrest were observed. To elucidate the mechanisms involved in this phenomenon, the expression of c-myc and c-Ha-ras genes whose products are associated with cell growth control was studied. Results showed that in chondrocytes, c-myc and c-Ha-ras expression was particularly important during the G1 phase of the cell cycle and that oxygen reactive species, especially H2O2, induced an important decrease of c-myc and c-Ha-ras mRNA levels. Chondrocytes cell cycle analysis revealed an accumulation of cells in G2 phase. It led us to suggest that the chondrocyte cell cycle perturbations observed after oxygen free radicals treatment could be associated with the decrease of c-myc and c-Ha-ras expression.  相似文献   

9.
10.
Summary The electrophysiological properties of EJ (human bladder carcinoma), GM2291 (human fetal lung fibroblast), and of three hybrid cell lines obtained from their cell fusion were investigated using the patch-clamp technique. GM2291 cells, which are nontumorigenic, express voltage-dependent Na+ channels. The pharmacology and gating properties of the Na+ channels in GM2291 cells are distinct from neuronal and cardiac Na+ channels. EJ cells, which are tumorigenic and contain activated c-Ha-ras, express inward rectifier K+ channels. The three cell-fusion hybrid lines, named 145 (nontumorigenic), 145L (non-tumorigenic but morphologically altered), and 147TR2 (fully tumorigenic segregant), have been previously shown to express levels of activated c-Ha-ras similar to those of the EJ parental line. Voltage-dependent Na+ channels were observed in none of the hybrid cell lines, while inward rectifier K+ channels were observed in each of the hybrid cell lines. The possibility that c-Ha-ras inhibits expression of a voltage-dependent Na+ channel is discussed.  相似文献   

11.
Mutation in the DNMT3B DNA methyltransferase gene is a common cause of ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) immunodeficiency syndrome and leads to hypomethylation of satellites 2 and 3 in pericentric heterochromatin. This hypomethylation is associated with centromeric decondensation and chromosomal rearrangements, suggesting that these satellite repeats have an important structural role. In addition, the satellite regions may have functional roles in modifying gene expression. The extent of satellite hypomethylation in ICF cells is unknown because methylation status has only been determined with restriction enzymes that cut infrequently at these loci. We have therefore developed a bisulfite conversion-based method to determine the detailed cytosine methylation patterns at satellite 2 sequences in a quantitative manner for normal and ICF samples. From our sequence analysis of unmodified DNA, the internal repeat region analyzed for methylation contains an average of 17 CpG sites. The average level of methylation in normal lymphoblasts and fibroblasts is 69% compared with 20% in such cells from ICF patients with DNMT3B mutations and 29% in normal sperm. Although the mean satellite 2 methylation values for these groups do not overlap, there is considerable overlap at the level of individual DNA strands. Our analysis has also revealed a pattern of methylation specificity, suggesting that some CpGs in the repeat are more prone to methylation than other sites. Variation in satellite 2 methylation among lymphoblasts from different ICF patients has prompted us to determine the frequency of cytogenetic abnormalities in these cells. Although our data suggest that some degree of hypomethylation is necessary for pericentromeric decondensation, factors other than DNA methylation appear to play a major role in this phenomenon. Another such factor may be altered replication timing because we have discovered that the hypomethylation of satellite 2 in ICF cultures is associated with advanced replication.  相似文献   

12.
For a better understanding of epigenetic regulation of cell differentiation, it is important to analyze DNA methylation at a specific site. Although previous studies described methylation of isolated DNA extracted from cells and tissues using a combination of appropriate restriction endonucleases, no application to tissue cell level has been reported. Here, we report a new method, named histo endonuclease-linked detection of methylation sites of DNA (HELMET), designed to detect methylation sites of DNA with a specific sequences in a tissue section. In this study, we examined changes in the methylation level of CCGG sites during spermatogenesis in paraffin-embedded sections of mouse testis. In principle, the 3′-OH ends of DNA strand breaks in a section were firstly labeled with a mixture of dideoxynucleotides by terminal deoxynucleotidyl transferase (TdT), not to be further elongated by TdT. Then the section was digested with Hpa II, resulting in cutting the center portion of non-methylated CCGG. The cutting sites were labeled with biotin-16-dUTP by TdT. Next, the section was treated with Msp I, which can cut the CCGG sequence irrespective of the presence or absence of methylation of the second cytosine, and the cutting sites were labeled with digoxigenin-11-dUTP by TdT. Finally, both biotin and digoxigenin were visualized by enzyme- or fluorescence-immunohistochemistry. Using this method, we found hypermethylation of CCGG sites in most of the germ cells although non-methylated CCGG were colocalized in elongated spermatids. Interestingly, some TUNEL-positive germ cells, which are frequent in mammalian spermatogenesis, became markedly Hpa II-reactive, indicating that the CCGG sites may be demethylated during apoptosis. An erratum to this article can be found at  相似文献   

13.
We conducted genome‐wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3‐binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3‐associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.  相似文献   

14.
Summary We have examined the c-Ha-ras locus in 145 cancer patients of a mixed group and 164 normal individuals in Japan for restriction fragment length polymorphisms and compared the allele distributions in normal and cancer populations. The c-Ha-ras gene is highly polymorphic in Japanese as previously reported in Caucasians. Two rare alleles were found to be present with increased frequencies in Japanese cancer patients. These results suggest that genotype analysis of the c-Ha-ras gene could be used to detect cancer-prone individuals.  相似文献   

15.
It is known that neoplastic transformation of rodent primary embryonic fibroblasts culturedin vitro requires coexpression at least of two cooperating oncogenes. In the case of transduction into cells of oncogenesras andmyc, the cell transformation is poorly effective. To study some additional factors necessary for such transformation, c-myc and N-ras Asp12 were consecutively introduced into REF52 cells by retroviral infection, and the cell cultures obtained were analyzed. Expression ofmyc broke the regulation of the cell cycle, in particular, canceled the G1 phase arrest for cells with damaged DNA, despite the normal function of protein p53 and induction of the p53-responsive genep21 Waf1 in these cells. The subsequent transduction ofras led to morphological transformation of cells and an increase of p53 level. However, reversion of the transformed phenotype to normal morphology took place after less than five passages. On this background, rare clones generated the stable transformed cell lines characterized by accelerated proliferation and having a mutation in thep53 gene. Attempts to obtain stable transformed cell lines by transduction ofras into REF52 cells not expressing exogenousmyc were unsuccessful. Analysis of the stable transformed clones revealed a mutation at codon 271 of thep53 gene, a hot spot of mutations, which led to the replacement of arginine by cysteine. In these clones, p53 is accumulated owing to the increased life time, and has a flexible conformation, being able to interact with monoclonal PAb1620 and PAb240 antibodies recognizing alternative protein conformations. The results obtained suggest that p53 participates in negative regulation of the cell cycle under conditions of oncogenic stimulation, and its inactivation is necessary for full transformation of cells by cooperating oncogenesmyc andras.  相似文献   

16.
17.
Bloom's syndrome (BS) is an autosomal recessive disorder, characterized by a high incidence of cancer at a young age. Cytogenetically, BS cells exhibit a high frequency of chromosomal damage and sister chromatid exchange (SCE). Thus, BS provides a human model of a genetic disorder exhibiting both chromosomal instability and a high incidence of cancer. In addition to its involvement in gene regulation, CpG methylation has recently been suggested to play an important role in the evolution and stability of chromosome structure. We have examined DNA methylation profiles of total DNA and some selected repeated sequences in normal and BS cells. No specific DNA hypomethylation in either total blood or lymphoblastoid cell lines from BS patients has been detected, suggesting that the genomic instability observed in BS is not directly related to a major DNA demethylation of the total CCGG sites, or of Alu or chromosome 1 satellite 2 repeated sequences.  相似文献   

18.
19.
Summary Cellular subclones of high and low tumorigenicity obtained from a mouse c-Ha-ras-transformed clone, were examined for their sensitivity to tumornecrosis-factor (TNF)-mediated cytotoxicity. Cells of the highly tumorigenic subclones showed a significantly enhanced resistance to the cytotoxic effect of TNF plus cyclohexamide (CHI) as compared to cells of the lowtumorigenic subclones. The enhanced resistance to TNF+CHI was not due to a lower expression of TNF receptors on the cells. The c-Ha-ras-transfected cells were transformed and maintained in culture only (C cells). In vivo passage of cells of the initially low-tumorigenic c-Ha-ras subclones through the mouse significantly enhanced the tumorigenic potential of these CTC cells (culture/tumor/culture). In correlation with their enhanced tumorigenicity, the CTC cells were highly resistant to TNF-mediated cytotoxicity as compared to C cells of the same subclone. Furthermore, the involvement of TNF in determining the tumorigenic phenotype of the c-Ha-ras-transformed cells was demonstrated in a more direct manner. Cells of a c-Ha-ras-transformed low-tumorigenic, highly TNF-sensitive subclone were selected by repeated cycles of in vitro exposure to TNF. As a result, a stable, highly TNF-resistant population of cells emerged. These TNF-resistant cells caused more tumors in mice as compared to their original TNF-sensitive cells. These results show that the resistance to the cytotoxic effect of TNF plus cyclohexamide may be involved, at least partially, in the tumorigenic potential of c-Ha-ras-transformed cells and suggest a possible role for TNF in the enhancement of the tumorigenic potential of these cells in mice.  相似文献   

20.
Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci targeting sequence (RFTS) is an N-terminal domain of DNMT1 that inhibits DNA-binding and catalytic activity, suggesting that RFTS deletion would result in a gain of DNMT1 function. However, a substantial body of data suggested that RFTS is required for DNMT1 activity. Here, we demonstrate that deletion of RFTS alters DNMT1-dependent DNA methylation during malignant transformation. Compared to full-length DNMT1, ectopic expression of hyperactive DNMT1-ΔRFTS caused greater malignant transformation and enhanced promoter methylation with condensed chromatin structure that silenced DAPK and DUOX1 expression. Simultaneously, deletion of RFTS impaired DNMT1 chromatin association with pericentromeric Satellite 2 (SAT2) repeat sequences and produced DNA demethylation at SAT2 repeats and globally. To our knowledge, RFTS-deleted DNMT1 is the first single factor that can reprogram focal hypermethylation and global hypomethylation in parallel during malignant transformation. Our evidence suggests that the RFTS domain of DNMT1 is a target responsible for epigenetic changes in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号