首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mare, rates of fertilization and development are low in oocytes matured in vitro, and a closer imitation of in vivo conditions during oocyte maturation might be beneficial. The aims of the present study were, therefore, to investigate whether (1) equine oocytes can be matured in vitro in pure equine preovulatory follicular fluid, (2) priming of the follicular fluid donor with crude equine gonadotrophins (CEG) before aspiration of preovulatory follicular fluid promotes the in vitro maturation rate, (3) the in vitro maturation rate differs between oocytes aspirated during estrus and those aspirated again 8 days after the initial follicular aspiration, and (4) high follicular concentrations of meiosis activating sterols (MAS) are beneficial for in vitro maturation of equine oocytes. During estrus, 19 pony mares were treated with 25 mg CEG. After 24 h (Al) and again after 8 days (A2), all follicles >4mm were aspirated and incubated individually for 30 h in the following culture media: standard culture medium (SM), preovulatory follicular fluid collected before CEG containing low MAS concentrations (FF1), preovulatory follicular fluid collected before CEG containing high MAS concentrations (FF2) or preovulatory follicular fluid collected 35 h after administration of CEG containing low MAS concentrations (FF3). Cumulus expansion rate was significantly affected by culture medium. The overall nuclear maturation rate was significantly higher for oocytes collected at A1 (67%) than for oocytes collected at A2 (30%). For oocytes collected at A1, the maturation rates were 71% (FF1), 61% (FF2), 79% (FF3) and 56% (SM). An electrophoretic protein analysis of the culture media revealed the presence of a 200-kDa protein in FF3. The results demonstrate that (1) equine oocytes can be matured during culture in pure equine preovulatory follicular fluid, (2) preovulatory follicular fluid collected after gonadotrophin-priming seems superior in supporting in vitro maturation than standard culture medium, (3) oocytes aspirated 8 days after a previous aspiration are less competent for in vitro maturation than oocytes recovered during the initial aspiration, and (4) the regulation of meiotic resumption during in vitro culture of equine oocytes might be related to the presence of a 200-kDa protein.  相似文献   

2.
In mares, the shortage of oocytes and the variability in nuclear maturation at a certain time of the oestrous cycle hinders the optimization of methods for in vitro maturation and in vitro fertilization. Increasing the number of small-to-medium-sized follicles available for aspiration in vivo may increase the overall oocyte yield. The aims of the present study were to investigate whether administration of crude equine gonadotrophins affects follicular development, oocyte recovery rate, in vivo oocyte maturation and follicular concentrations of meiosis-activating sterols. During oestrus, all follicles >/= 4 mm were aspirated from 19 pony mares (first aspiration: A1). Over the next 8 days, the mares were treated daily with either 25 mg crude equine gonadotrophins (n = 10) or physiological saline (n = 9). Between day 1 and day 8, follicular growth was monitored by ultrasonography. On day 8, all follicles >/= 4 mm were evacuated (second aspiration: A2) and nuclear maturation of the recovered oocytes was assessed after orcein staining. Follicular growth between A1 and A2, as well as the number and size of follicles at A2 were similar for control mares and mares treated with crude equine gonadotrophins. The oocyte recovery rates at A1 and A2 were similar. At A2, the oocyte recovery rate and oocyte maturation in vivo were not affected by treatment with crude equine gonadotrophins. The number of expanded cumulus oophorus complexes recovered from follicles 相似文献   

3.
Cows and heifers were induced to superovulate by treatment with PMSG or FSH. The ultrastructural features of the oocytes were related to the time of the LH peak and the progesterone/oestradiol-17 beta ratios in the follicular fluid. At 0-2 h after the LH peak the perivitelline space developed; at 9-12 h there was disconnection of the junctions between cumulus cell projections and oolemma, and the concomitant breakdown of the oocyte nucleus; at approximately 15 h there were spatial rearrangements in the ooplasm of (a) mitochondrial clusters from a peripheral to an even distribution and (b) vesicles from an even distribution to a more central location; at approximately 19 h there was abstriction of the first polar body with dislocation of mitochondrial clusters and vesicles towards the site of polar body formation; at 21-22 h there was migration of cortical granules to solitary positions along the oolemma and decrease in the sizes of Golgi complexes and, on some occasions, the smooth endoplasmic reticulum. These ultrastructural changes were accompanied by an increase in progesterone/oestradiol ratios in the follicular fluids. It is concluded that preovulatory oocyte maturation in gonadotrophin-stimulated cattle comprises nuclear as well as cytoplasmic changes accompanied by steroidogenic changes in the follicle, each of which are closely related to the time of the LH peak. However, some variation existed between animals, between follicular and oocyte maturation and even within oocytes between nuclear and cytoplasmic maturation.  相似文献   

4.
Epidermal growth factor (EGF) has been reported to promote different functions in mammalian ovaries, including oocyte maturation. The aim of the present study was to establish: that EGF influences oocyte maturation in ovine and equine, that a tyrosine kinase-dependent intracellular mechanism mediates EGF effect and, that EGF-R receptor is detectable in ovarian follicles by immunohistochemistry methods. Selected ovine and equine oocytes were aspirated from 2–5 mm (ovine) or 25 mm (equine) follicles and cultured in TCM 199 for 22 (ovine) or 36 hours (equine). They are then subjected to culture with EGF and two specific tyrosine-kinase inhibitors (TKIs, tyrphostins A-23 y A-47). Maturation was determined as the percentage of oocytes at metaphase II stage after culture. Treatments with EGF significantly increased incidences of metaphase II stage compared to controls (86.2% vs. 55% and 70.4% vs, 22.5% in ovine and equine oocytes, respectively). Tyrphostins A-23 and A-47 were effective in suppressing EGF-effect on oocytes. EGF-receptor was localized in follicles, being more prominent in cumulus and granulosa cells. These results confirm that EGF has a physiological role in the regulation of oocyte maturation via tyrosine-kinase pathway.  相似文献   

5.
Two experiments were carried out to test the hypothesis that follicles recovered from Meishan animals may provide a more favourable environment for oocyte maturation in vitro than follicles recovered from Large-White hybrid animals. In Experiment 1, all follicles ≥4 mm were recovered from six Meishan and seven Large-White hybrid gilts in the late follicular phase and healthy oocyte cumulus complexes recovered. Cumulus oocyte complexes were randomly divided into two groups, and each group cultured for 27 or 34 h (62 and 64; 56 and 56 for Meishan and Large-White hybrid, respectively) in defined medium in the presence of either of the two largest follicle shells per animal. Subsequent examination of oocyte nuclear maturation showed that although maturation did not differ significantly between the breeds after 27 h, more (P<0.01) Meishan oocytes co-cultured with Meishan follicles developed to metaphase II stage than Large-White hybrid oocytes co-cultured with Large-White hybrid follicles after 34 h. The next eight largest follicles per animal were cultured for 34 h to produce conditioned media. In Experiment 2, oocytes recovered from the slaughterhouse were matured for 46 h in the presence of conditioned media from Meishan (612 oocytes) or Large-White hybrid (731 oocytes) follicles, or in fresh medium in the presence of a follicle shell from slaughterhouse ovaries. Oocytes were then inseminated and 12 h later examined for penetration and male pronuclear formation. A higher (P<0.05) percentage of oocytes cultured in Meishan follicle conditioned medium underwent sperm penetration and male pronuclear formation than oocytes cultured in conditioned media from Large-White hybrid animals. Concentrations of oestradiol and progesterone in the conditioned media did not differ between the breeds (P>0.1). In conclusion, these results suggest that (1) Meishan oocytes have advanced maturational capacity when cultured with Meishan preovulatory follicle shells and (2) differences in follicle maturation in the Meishan compared to the Large-White hybrid pig may result in an improved ability of the follicles, via conditioned media, to support oocyte maturation and fertilization in vitro.  相似文献   

6.
We studied the relationship among the status of the human oocytes, the E2 concentration in the antral fluid and the follicular size in the different phases of the menstrual cycle, in order to determine the microenvironment of the follicles with healthy or degenerative oocytes in the human ovary. In the follicular phase of the menstrual cycle, follicles which contained a healthy but not degenerative oocyte had a significantly higher level of 17 beta-estradiol (E2). In the late follicular phase, the larger follicles (greater than or equal to 13 mm, in diameter) had only health oocytes. It seems that the follicle containing a degenerative oocyte does not develop physiologically until maturation of the preovulatory follicle. In the luteal phase, there were no relationships among the status of the oocyte, E2 concentration in the antral fluid and the follicular size. However, the E2 levels of the antral follicles with healthy oocytes in an ovary with corpus luteum were significantly lower than those in the contralateral ovary. The results suggest that the corpus luteum may exert an influence on the adjacent follicles.  相似文献   

7.
Equine oocytes (n = 537) were collected from slaughterhouse ovaries (n = 118 mares) by scraping the internal follicular wall. Preculture record was made of the appearance of oocyte investments (no cumulus, corona radiata only, compact cumulus, expanded cumulus), appearance of cytoplasm (homogeneous, condensed heterogeneous/fragmented), and nuclear maturation stages (germinal vesicle, germinal-vesicle breakdown, metaphase I, metaphase II, degenerated). There was no difference between follicles > 30 mm and follicles < or = 30 mm in the preculture frequency distribution among the 5 nuclear stages; 96% were at either the germinal vesicle or germinal-vesicle breakdown stages. Oocytes from follicles 5 to 30 mm were cultured in modified TCM-199 for 18, 24, 36 and 48 h. Postculture nuclear maturation classifications were immature (germinal vesicle, germinal-vesicle breakdown, and metaphase I), mature (metaphase II or secondary oocyte), and degenerated. The frequency distribution of oocytes among the 3 postculture maturation classifications changed (P < 0.05) at 18 h (15% mature oocytes), changed (P < 0.05) further at 24 h (55% mature oocytes), with no additional change for 36 or 48 h. The only preculture cytoplasm group that affected the postculture results was the heterogeneous/fragmentation group which had a high proportion of postculture degenerated oocytes (67%); however, only 4% of oocytes were in this group. Luteal status of the mare had an effect (P < 0.05) on the frequencies of the maturation classifications, but not enough to be useful in selecting oocytes. Consistency of the follicle and the type of oocyte investment did not alter significantly the maturation frequencies. The frequency of degenerated oocytes after culture was high under the following conditions: 1) diameter of the follicle from which the oocyte was selected was 5 to 10 mm (44% degenerated oocytes), 2) the largest follicle per pair of ovaries was < or = 10 mm (63%), and 3) the mare was pregnant (66%). These results were probably related to the reported high frequency of atretic follicles in the 5- to 10-mm population. In summary, oocytes from individual follicles < or = 10 mm or from follicles in which the largest follicle per mare was < or = 10 mm were the poorest candidates for in vitro maturation.  相似文献   

8.
Follicular fluid from small- to medium-sized follicles has been shown to have an inhibiting effect on luteinization of granulosa cells in vitro. This study was conducted to investigate the effect of in vivo removal of follicular fluid on luteinization, peripheral gonadotropin concentrations, and ovulation of secondary follicles in the mare. Follicular fluid was aspirated from the preovulatory follicles of mares when the diameter of the follicle was 30-34 mm (Group A), 35-39 mm (Group B), or 40-44 mm (Group C). Mares in Group D served as controls and the preovulatory follicle was not aspirated. Mares in Group A had a significantly earlier rise in peripheral progesterone concentrations than did controls. There was no difference in duration of progesterone secretion or peak progesterone production between groups. LH and FSH values were significantly higher for mares in Groups A and B than for control mares. Mares in Group A tended to have a higher incidence of secondary ovulations than did mares in other groups. These data support the in vitro findings that follicular fluid from small- to medium-sized follicles may contain a luteinization inhibitor, and indicate that presence of follicular fluid during the final days of follicular maturation is not essential for development of a normal CL.  相似文献   

9.
Oocytes may be collected from live mares from either the stimulated preovulatory follicle or from all visible immature follicles. We evaluated the yield of mature oocytes, and of blastocysts after intracytoplasmic sperm injection (ICSI), for both follicle types. In Experiment 1, mares were assigned to Progesterone (1.2 g biorelease progesterone weekly) or Control treatments. Transvaginal aspiration of all follicles was performed every 14 d. Overall, 596 follicles were aspirated, with a 54% oocyte recovery rate. There was no difference between treatments in number of follicles punctured (9.0 to 9.1) or oocytes recovered (4.8 to 5.0) per mare per aspiration session. Of 314 oocytes recovered, 180 (57%) matured in culture. Thirty-six mature oocytes were subjected to ICSI; 33% formed blastocysts (63% per mare per aspiration session). In Experiment 2, the preovulatory follicle was aspirated every 14 d for three to four cycles. Prostaglandin F was given on Days 6 and 7 after aspiration. A follicle ≥25 mm in diameter was present on Day 13, the day of deslorelin administration, in 23 of 24 cycles, and ovulatory response (granulosa expansion) was seen in 24 of 25 follicles aspirated. Blastocyst development after ICSI was 41% per injected oocyte, or an estimated 33% per mare per aspiration session. We concluded that both aspiration of immature follicles and aspiration of the preovulatory follicle can be performed effectively every 14 d without monitoring ovarian follicular growth. As performed in these separate experiments, aspiration of immature follicles provided more blastocysts per aspiration session.  相似文献   

10.
The concentration and content of inhibin was determined in individual porcine follicles from gilts ovariectomized at various times after the onset of estrus. In one experiment, gilts (n = 5) were ovariectomized at 0, 10, or 20 hr after the onset of estrus and the follicular fluids from all large follicles individually aspirated. In a second experiment, gilts (n = 6) were ovariectomized at 21, 24, 27, 30, or 34 hr after the onset of estrus; follicular fluids were aspirated; and each oocyte was stained and evaluated for cytogenetic stage of meiotic maturation. Inhibin was determined in diluted follicular fluids with a radioimmunoassay based on a synthetic peptide replica of part of the alpha subunit of porcine inhibin. Inhibin values were expressed in terms of thousands of units (kU) of a World Health Organization inhibin standard (86/690). Concentration of inhibin did not vary among hours (overall mean 248 kU/ml). Total follicular content of inhibin also was not different among hours (overall mean 57 kU/follicle). When follicles were classified on the basis of the maturation of the oocyte, significant differences were found. Concentration of inhibin in follicles with a germinal vesicle-stage oocyte was 138 kU/ml, whereas follicles with more mature oocytes had concentrations of between 204 and 254 kU/ml. Follicular content of inhibin showed a similar pattern with 34.9 kU/follicle at germinal vesicle stage, increasing to 42.5-56.1 kU/follicle at later stages. Quantities of inhibin were also negatively skewed and were positively correlated to follicular content of estradiol and dermatan sulfate.  相似文献   

11.
This study was conducted to identify an in vitro culture system that would support intact porcine follicle growth from preantral follicle to antral stages, oocyte maturation, fertilization, and embryonic development; and to evaluate factors that influence porcine preantral follicle growth in vitro. Preantral follicles isolated from prepubertal porcine ovaries were cultured for 4 days in the presence of different concentrations of porcine serum and FSH, and with different numbers of follicles per well. A series of experiments showed that porcine antral follicles can be grown at a high frequency in vitro from healthy preantral follicles with intact theca when cultured in North Carolina State University 23 medium supplemented with 1.5 ng/ml FSH, 7.5% serum, and when cultured with three follicles per well. After 4 days of culture, 68% healthy cumulus-enclosed oocytes from these follicles were obtained, and 51% of the oocytes completed meiotic maturation to the metaphase II stage. Fifty-three percent of the mature oocytes underwent fertilization, 43% of the fertilized oocytes cleaved, and 13% developed to the blastocyst stage. The results show 1) that porcine preantral follicles can grow efficiently to the antral stage using these culture conditions, and 2) that oocytes from in vitro-matured porcine preantral follicles can acquire meiotic competence and undergo fertilization and embryonic development.  相似文献   

12.
Histological examination of gonadotrophin stimulated Macaca fascicularis ovaries removed at mid-follicular phase showed that germinal vesicles (GV) could exhibit different configurations in follicles greater than 1000 microns in diameter. We describe 3 types of nuclear organization called GV1 (dispersed and filamentous chromatin), GV2 (clumped and filamentous chromatin) and GV3 (perinucleolar chromatin condensation). Gonadotrophin stimulation and follicular atresia induced modifications in GV chromatin dispersion. Such modifications were of a higher degree in the case of atresia which could even induce in vivo germinal vesicle breakdown (GVBD). Our findings were as follows. The frequency of GV1 oocytes was always low, but was higher in healthy than in atretic follicles, whereas GV3 oocytes were more frequent in atretic compared to healthy follicles; the oocytes which resumed meiosis in vitro were most probably those which were at the GV3 stage at the time of recovery; GV nuclear changes were related to follicle size and quality, but not to oocyte size. The mean follicular size increased from GV1 to GV3 oocyte stages whatever the follicle quality; the nucleus was often observed in a peripheral position even in GV1 oocytes; zona pellucida appearance was related to GV stage and follicle quality and was more often observed to be abnormal or absent in case of GV3 oocytes included in atretic follicles. Oocyte nuclear modifications therefore appear to be a prerequisite to resumption of meiosis.  相似文献   

13.
Success of in vitro maturation (IVM) and production of bovine embryos as related to aspects of follicle source and oocyte size were evaluated. First, it was determined that bovine oocytes continue growing in all follicular sizes studied, including >1- to 15-mm follicles. Populations of oocytes were collected from surface visible (peripheral) and cortical follicles from the same ovaries. When the number of oocytes from both peripheral and cortical follicles was combined, the yield of oocytes was approximately double that collected from 1 ovarian site alone. Oocytes from cortical follicles were smaller than those from the surface population, and the smaller cortical oocytes had a lower potential for both meiotic maturation and embryo development Only cortical oocytes with the largest diameters underwent IVM and subsequently developed to blastocysts at rates comparable to oocytes from peripheral follicles. As the diameter of the oocytes recovered from peripheral follicles increased, so did their developmental potential. When the stage of the estrous cycle was observed, it was found to have no effect on developmental potential. Finally, oocytes which extruded polar bodies at an earlier time during maturation were, on average, larger than those which extruded polar bodies later. The results serve a practical purpose in assisting selection of oocytes capable of developing into blastocysts and they give useful correlates of oocyte competencies based on knowledge of follicle source and oocyte stage.  相似文献   

14.
Oocytes and follicular components obtained from ovaries recovered from mature Hereford cows at slaughter were used to determine follicular influence on oocyte maturation. Some oocytes were fixed immediately to determine the stage of maturation. The remaining oocytes were cultured for 32 to 34 hr in various environments to determine the influences of the granulosum and follicular fluids on meiotic changes. All noncultured oocytes had dictyate nuclei except one in premetaphase. Oocytes cultured in 50 or 100% follicular fluid or in contact with stratum granulosum cells showed some meiotic inhibition both before and after germinal vesicle breakdown (GVB). The least resumption of meiosis occurred in oocytes cultured in their intact follicles.  相似文献   

15.
In-vivo and in-vitro maturation rate of oocytes from two strains of mice   总被引:4,自引:0,他引:4  
Female mice of the KE and CBA strains were used to examine the rate of oocyte maturation in vivo and in vitro. In CBA females killed just before ovulation most preovulatory oocytes were already in the metaphase II stage, while the oocytes of KE mice were arrested at metaphase I until the time of ovulation, and further stages of maturation occurred in the oviduct, reaching the metaphase II stage 3-5 h later. A similar strain difference in oocyte maturation rate was observed from in-vitro culture of cumulus-free oocytes, isolated from the ovaries of PMSG-primed females and intact females killed at the metoestrous phase of the cycle. This indicates that the strain-specific course of maturation is determined in the oocyte by a few days before ovulation. Therefore, if the rate of oocyte maturation is influenced by somatic components of the follicle, this must occur at some earlier stages of follicle development.  相似文献   

16.

Background  

Follicular fluid contains substances involved in follicle activity, cell differentiation and oocyte maturation. Studies of its components may contribute to better understanding of the mechanisms underlying follicular development and oocyte quality. The canine species is characterized by several ovarian activity features that are not extensively described such as preovulatory luteinization, oocyte ovulated at the GV stage (prophase 1) and poly-oocytic follicles. In this study, we examined the hypothesis that the preovulatory LH surge is associated with changes in steroid and protein content of canine follicular fluid prior to ovulation.  相似文献   

17.
The intrafollicular content of LH receptor, alpha-inhibin, and aromatase are known good indicators of follicular status. We investigated the amounts of these proteins in granulosa and cumulus cells in relation to oocyte competence for in vitro maturation, follicular growth, and estrous cycle stage in the mare. Follicular punctures were performed 34 h after an injection of crude equine gonadotropins, either during the follicular phase, at the end of the follicular phase, or during the luteal phase. The cumulus-oocyte complex, granulosa cells, and follicular fluid of follicles larger than 5 mm were collected. The nuclear stage of the oocytes after in vitro culture was determined microscopically. Granulosa and cumulus cell amounts of LH receptor, alpha-inhibin, and aromatase were assessed by the semiquantitative Western blot method and image analysis. Follicular fluids were assayed for progesterone (P4) and estradiol-17beta (E2). The three factors were expressed in mural granulosa and cumulus cells from all follicles from the gonadotropin-independent growth period until the preovulatory stage. Considering all the follicles punctured, the amounts of LH receptor and alpha-inhibin in granulosa cells were not different for the three physiological stages studied. The amounts of aromatase in granulosa cells, as well as the E2:P4 ratios, were higher for follicles punctured during the follicular phase than for the two other groups (p < 0.05). Considering the data from the three groups, the E2:P4 ratio and the LH receptor and aromatase contents, but not alpha-inhibin, in granulosa cells increased with an increase in follicular diameter (p < 0.01). The E2:P4 ratios and the amounts of LH receptor, alpha-inhibin, and aromatase in granulosa cells were lower in follicles 5-9 mm in diameter than in larger ones (p < 0.05). In cumulus cells, the amounts of the three factors were different neither between the three groups nor between the follicular diameters. Although we could not establish any obvious relationship to oocyte competence for in vitro maturation, the influence of the follicle diameter on the content of LH receptors, alpha-inhibin, and aromatase in granulosa cells was similar to the influence of follicle diameter on oocyte competence. Therefore, one can hypothesize that, in the mare, there is a link between the acquisition of oocyte competence and the expression of these factors in the follicular cells.  相似文献   

18.
19.
The aim of this study was to compare three different culture systems for in vitro follicular growth and oocyte maturation in ovarian follicles of mice in order to assess the technique with the optimal growth and improved rate of meiotic maturation. The three systems tested were culture under oil, on a hydrophobic membrane and on agar respectively. Early preantral follicles were cultured for 12 days in alpha-MEM GlutaMAX medium. Follicular growth, oocyte meiotic maturation, oocyte extrusion, atresia and estradiol production were analysed. Follicular development showed two phases in the three systems, with slow growth before day 5 and subsequent acceleration. The percentage of follicles transferred into oocyte maturation medium was significantly higher after culture under oil. The proportion of oocytes that achieved nuclear maturation (metaphase II) was higher when follicles were cultured under oil or on a hydrophobic membrane than on agar. Our results support the use of culture under oil for in vitro follicular growth from the early preantral stage in order to obtain metaphase II oocytes. Fertilization ability of these oocytes and the capacity to obtain healthy mice in a reproducible manner warrants further investigation.  相似文献   

20.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号