首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferon-γ (INFγ) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INFγ required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INFγ acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF-γ addition was delayed after culture initiation. The effects of INFγ on BFU-E did not require the presence of interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1α, TNFα, or GM-CSF. This applied whether INFγ was added to culture with individual antibodies or with a combination of all three antibodies. INFγ was not required for IL-1α- or TNFα-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INFγ antibody. In contrast, GM-CSF—induced suppression of BFU-E was negated by the simultaneous addition of anti-INFγ. We have previously shown that the addition of TNFα does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INFγ that does not inhibit and increasing concentrations of TNFα were added to culture, suggesting a synergistic effect between INFγ and TNFα. These observations suggest that INFγ is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to suppress late erythroid cell development. INFγ is also involved in GM-CSF—induced inhibition of BFU-E colony growth. © 1995 Wiley-Liss, Inc.
  • 1 This artilce is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    2.
    3.
    The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

    4.
    The influences of TNF alpha and TNF beta were evaluated for their stimulatory and inhibitory effects on in vitro colony formation by human bone marrow granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells. Both TNF alpha and TNF beta induced fibroblasts to produce stimulators of CFU-GM, BFU-E, and CFU-GEMM in a dose-dependent fashion. Similar results were seen when equivalent concentrations of TNF alpha and TNF beta were used. Prior incubation of the TNF alpha and TNF beta with their respective antibodies inactivated the ability of the TNF preparations to induce the release of granulocyte-macrophage, erythroid, and multipotential colony-stimulating activity from fibroblasts. In addition, incubation of the TNF-induced fibroblast supernatant with antibody before colony assay resulted in enhanced colony formation, suggesting that the TNF carried over into the colony assay suppressed colony formation. Additional proof of this suppression by TNF was evident when TNF was added directly to the CFU-GM, BFU-E, and CFU-GEMM colony assays. IL-1 does not appear to function as an intermediary in growth factor production by fibroblasts stimulated with TNF because antibody to IL-1 displayed no effect. Furthermore, assay of TNF-induced fibroblast supernatant was negative for IL-1. These results suggest that TNF alpha and TNF beta exert both a positive and negative influence on in vitro hemopoietic colony formation.  相似文献   

    5.
    Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate-poly-L-lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.  相似文献   

    6.
    The course of the differentiation and proliferation of the human erythroid burst-forming units (BFU-E) to colony-forming units (CFU-E) was directly investigated using a combination of highly purified BFU-E, a liquid culture system, and the following clonal assay. Highly purified human blood BFU-E with a purity of 45-79% were cultured in liquid medium with recombinant human erythropoietin (rEP) and recombinant human interleukin-3 (rIL-3) to generate more differentiated erythroid progenitors. The cultured cells were collected daily for investigating the morphology, the increment in the number of cells and the clonality. Ninety percent of purified BFU-E required not only rEP but also rIL-3 for clonal development. By 7 days of liquid culture, the total cell number increased 237 +/- 20-fold above the starting cells, while erythroid progenitors increased 156 +/- 74-fold. As the incubation time in liquid culture increased, the cells continuously differentiated in morphology. Replating experiments with rEP combined with or without rIL-3 showed the following: 1) The number of erythroblasts that were part of erythroid colonies decreased with accompanying erythroid progenitor differentiation and proliferation. 2) As the incubation time in liquid culture increased, erythroid progenitors had a graded loss of their dependency on rIL-3 and a complete loss of dependency was observed after 3 days of liquid culture. At that time 85% of the erythroid progenitors gave rise to colonies of more than 100 erythroblasts which were equivalent to mature BFU-E. These studies provide a quantitative assessment of the loss of IL-3 dependency by BFU-E and indicate that the size of the generated erythroid colonies and their IL-3 requirement correlate with the erythroid differentiated state.  相似文献   

    7.
    N Maruo  M Ozawa  M Kondo  S Fujita 《Histochemistry》1990,94(3):257-262
    A new method has been developed for the precise identification of human bone marrow colony forming unit erythroid (CFU-E) and burst forming unit erythroid (BFU-E) colonies, and for determination of the hemoglobin contents using microcytofluorometry. The method relies on a photochemical reaction in which intracellular hemoglobin is converted into fluorescent porphyrin under violet light (lambda = 405 nm) in the presence of an SH-donor (mercaptoethylamine hydrochloride). The CFU-E and BFU-E colonies showed red fluorescence with two spectrum peaks at 600 and 650 nm when illuminated by violet light. These two peaks are consistent with those of porphyrin fluorescence. The porphyrin fluorescence was not inducible in colony forming unit granulocyte-macrophage (CFU-GM) colonies, while 20% of the CFU-GM colonies were false positive with respect to the conventional benzidine reaction. The photochemically inducible fluorescence began to appear in BFU-E colonies on the 4th day of culture, while the same colonies started to be positive for the benzidine reaction on the 9th day. Therefore, the photochemical reaction was more specific and sensitive than the benzidine reaction for the identification of CFU-E and BFU-E colonies. In addition, this method enabled us to measure the hemoglobin level in the cells forming the colonies because the intensity of the fluorescence was proportional to the amount of hemoglobin when the photochemical reaction was carried out for 50 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

    8.
    The influences of human tumor necrosis factor (TNF) (LuKII), recombinant human TNF-alpha, natural human interferon-gamma (HuIFN-gamma), recombinant HuIFN-gamma, and natural HuIFN-alpha were evaluated alone or in combination for their effects in vitro on colony formation by human bone marrow granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells incubated at 5% CO2 in lowered (5%) O2 tension. TNF (LuKII) and recombinant TNF-alpha caused a similar dose-dependent inhibition of colony formation from CFU-GM, BFU-E, and CFU-GEMM. Day 7 CFU-GM colonies were more sensitive than both day 14 CFU-GM colonies and day 7 CFU-GM clusters to inhibition by TNF. BFU-E colonies and CFU-GEMM colonies were least sensitive to inhibition with TNF. The suppressive effects of TNF (LuKII) and recombinant TNF-alpha were inactivated respectively with hetero-anti-human TNF (LuKII) and monoclonal anti-recombinant human TNF-alpha. The hetero-anti-TNF (LuKII) did not inactivate the suppressive effects of TNF-alpha and the monoclonal anti-recombinant TNF-alpha did not inactivate TNF (LuKII). The suppressive effects of TNF did not appear to be mediated via endogenous T lymphocytes and/or monocytes in the bone marrow preparation, and a pulse exposure of marrow cells with TNF for 60 min resulted in maximal or near maximal inhibition when compared with cells left with TNF for the full culture incubation period. A degree of species specificity was noted in that human TNF were more active against human marrow CFU-GM colonies than against mouse marrow CFU-GM colonies. Samples of bone marrow from patients with non-remission myeloid leukemia were set up in the CFU-GM assay and formed the characteristic abnormal growth pattern of large numbers of small sized clusters. These cluster-forming cells were more sensitive to inhibition by TNF than were the CFU-GM colonies and clusters grown from the bone marrow of normal donors. The sensitivity to TNF of colony formation by CFU-GM of patients with acute myelogenous leukemia in partial or complete remission was comparable with that of normal donors. When combinations of TNF and HuIFN were evaluated together, it was noted that TNF (LuKII) or recombinant TNF synergized with natural or recombinant HuIFN-gamma, but not with HuIFN-alpha, to suppress colony formation of CFU-GM, BFU-E, and CFU-GEMM from bone marrow of normal donors at concentrations that had no suppressive effects when molecules were used alone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    9.
    Interleukin-10 (IL-10) has been shown to exert anti-inflammatory effects by suppressing macrophage proliferation and inhibiting cytokine production. In this study we show that in the presence of erythropoietin (EPO), the addition of IL-10 results in a significant dose-dependent increase in both Burst Forming Unit-Erythroid (BFU-E) and Colony Forming Unit-Erythroid (CFU-E) colony growth in both serum-containing and serum-free murine cultures in vitro. IL-10 acts at the later stages of erythroid cell proliferation and differentiation as the increase in colony number was greater in CFU-E than in BFU-E, and was similar when IL-10 was added to BFU-E cultures at the time of culture initiation as when its addition to culture was delayed for 7 days. Furthermore, no increase in BFU-E colony number was noted when IL-10, added at the time of culture initiation, was neutralized by the addition to culture of a monoclonal anti-IL-10 antibody up to 7 days later. The increases in BFU-E by IL-10 addition were not the result of prolongation of BFU-E colony lifespan, which was not significantly different in IL-10 treated and control cultures, respectively. Rather IL-10 stimulated the proliferation of erythroid clusters that were now large enough to be recognized as colonies. IL-10-induced stimulation of erythropoiesis appeared to be independent of its inhibitory effects on macrophage function, as stimulation of erythroid colony growth was similar in macrophage-containing and depleted cultures. Studies to determine if the IL-10 effect was direct or indirect yielded equivocal results. A limiting dilution assay suggested a direct effect. However, a log/log dose response curve with IL-10 did not pass through the origin suggesting an indirect effect. These studies indicate that IL-10 acts synergistically with EPO to significantly increase stimulation of erythroid differentiation and proliferation in vitro and may be involved in the regulation of normal erythropoiesis in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

    10.
    IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.  相似文献   

    11.
    To facilitate the direct study of the molecular events that control the development of human burst-forming units-erythroid (BFU-E), we have developed a method to purify BFU-E from peripheral blood. Using density centrifugation, rosetting with a mixture of neuraminidase-treated and IgG-coated sheep erythrocytes, positive panning with anti-My10 monoclonal antibody, overnight adherence to plastic dishes, negative panning with monoclonal antibodies, and density centrifugation, human blood BFU-E were purified from 0.04% to 56.6%, a 1,400-fold purification with a 13% yield. More than 90% of purified BFU-E were recombinant interleukin-3 (rIL-3) dependent, which survived for 48 h with rIL-3 in the absence of recombinant erythropoietin (rEP), and 80% gave rise to erythroid bursts of more than 500 hemoglobinized cells. rEP dependency was not evident until after 72 h of incubation in vitro. The purified cells (day 1) were incubated with rIL-3 and rEP in liquid culture for 24 (day 2), 48 (day 3), and 72 (day 4) h and then were transferred into semisolid cultures and incubated until day 15. The size of the erythroid colonies observed in semisolid cultures decreased continuously in association with the incubation time of day 1 purified cells in liquid cultures. The first appearance of colony-forming units-erythroid (CFU-E) that gave rise to colonies of 8 to 49 cells was observed after 72 h of incubation of day 1 cells in the liquid culture. 125I-rEP was incubated for 5 h at 37 degrees C with purified cells (day 1) or with the cells that had been incubated in liquid culture for an additional 24-72 h, and the presence of erythropoietin (EP) receptors was investigated using autoradiography. Specific binding of 125I-rEP was detected in 19 +/- 7% of the initial day 1 BFU-E. The percentage of 125I-rEP-binding to erythroid progenitor cells and the amount of binding continuously increased as day 1 BFU-E matured. 125I-rEP specific binding was observed with all of the erythroid progenitor cells that had been incubated in liquid culture for 72 h. These data demonstrate that primitive BFU-E have a much lower number of EP receptors than CFU-E and develop an increased concentration of EP receptors in association with their maturation and loss of proliferative capacity.  相似文献   

    12.
    The suppressive role of platelets on the growth of human marrow megakaryocyte colony forming units (CFU-M) in vitro was investigated by the use of a plasma clot assay. An inverse correlation was established between the number of megakaryocytic colonies grown and the platelet concentration of the plasma or the resultant serum used in the culture system. The suppressive effect of platelets on megakaryocyte colony formation reached a plateau at normal human blood platelet concentration and was specific for CFU-M growth, since marrow cell erythroid burst formation (BFU-E) and granulocytic-monocytic colony formation (CFU-GM) remained unaffected. The inhibitory activity was detectable in the supernatants of platelet suspensions aggregated by thrombin or ADP, and the inhibitory activity released from ADP-stimulated platelets was blocked by pretreatment of platelets with monoclonal antibody HuPl-m1. Partial purification of this activity was achieved by diethylaminoethyl (DEAE)-ion exchange and phytohemagglutinin (PHA)-E agarose affinity chromatography. This inhibitor is a glycoprotein with a molecular weight of 12-17K daltons. This platelet released glycoprotein does not affect the early proliferative phase of CFU-M in vitro but acts on a day 6-8 CFU-M-derived cell by adversely affecting its maturation into recognizable megakaryocytes. These findings demonstrate that a glycoprotein released from platelets suppresses the maturation of CFU-M into megakaryocytes.  相似文献   

    13.
    We studied the effects of 1,25-dihydroxyvitamin D3 and other metabolites of vitamin D3 on the maturation in liquid culture and on colony formation in semisolid media of marrow and buffy coat cells from patients with myeloid leukemias and from normal individuals. After incubation with 1,25-dihydroxy-vitamin D3, a proportion of both normal and leukemic myeloid cells resembled cells of the monocyte-macrophage lineage; these cells expressed alpha-naphthylacetate esterase and were able to phagocytize and kill candida organisms. When granulocyte-macrophage progenitor cells (CFU-GM) were incubated with 1,25-dihydroxyvitamin D3, the number of monocyte-macrophage colonies was increased and the number of granulocyte colonies was reduced; megakaryocyte colony formation (CFU-Mk) was inhibited substantially; and there was no effect on erythroid (BFU-E) or multilineage (CFU-GEMM) progenitor cell colony formation. We propose that 1,25-dihydroxyvitamin D3 may induce cells that are normally committed to differentiate along the granulocytic pathways to differentiate instead along the monocyte-macrophage pathway. If these in vitro observations reflect the in vivo activity of 1,25-dihydroxyvitamin D3, it may be involved in the modulation of collagen deposits in the bone marrow.  相似文献   

    14.
    Merocyanine 540 (MC 540) is an impermeant fluorescent dye that binds preferentially to fluidlike domains of the cell membrane. Photoexcitation of membrane-bound dye causes a breakdown of the normal permeability properties of the membrane and, eventually, cell death. We have used in vitro and in vivo clonal assays to determine the relative sensitivities of different classes of normal murine hematopoietic progenitor cells to MC 540-mediated photosensitization. Late erythroid progenitors (CFU-E) were the most sensitive cells, followed in order of decreasing sensitivity by early erythroid progenitors (BFU-E), megakaryocyte progenitors (CFU-Meg), day 7-spleen colony forming cells (day 7-CFU-S), granulocyte/macrophage progenitors (CFU-GM), and day 11-spleen colony forming cells (day 11-CFU-S). Bipotent progenitors of the granulocyte/macrophage lineage were more sensitive than unipotent macrophage progenitors but less sensitive than unipotent granulocyte progenitors. Progenitors giving rise to large granulocyte/macrophage colonies were more sensitive than progenitors giving rise to small colonies ("clusters"). We conclude that sensitivity to MC 540-mediated photosensitization is develop-mentally regulated and that differences occur even between the most closely related classes of progenitor cells. Our findings indicate the usefulness of MC 540 as a plasma membrane probe. They also support the contention that early and late-appearing spleen colonies are the progeny of two distinct classes of progenitor cells.  相似文献   

    15.
    In this study, we demonstrated that benzene and its metabolites, phenol and hydroquinone, were toxic to human burst-forming unit-erythroid (BFU-E) growth, hydroquinone being the most toxic. Phenol (10(-4) M) was also found to have a marked toxicity on stromal cell colony formation. BFU-E binding with human-tumor necrosis factor (rHu-TNF) was linear with the number of BFU-E colonies. Recombinant rHu-TNF suppressed BFU-E growth in a dose-dependent manner and this was reversed with anti-TNF antibody. Binding studies of rHu-TNF for human K562 cells indicated that K562 cells have a binding constant of approximately 1075 per cell. The heme pathway enzymes, uroporphyrinogen deaminase, and heme oxygenase activities were measured in BFU-E cultures exposed to iron, interleukins (1 and 2), and various lymphocyte and macrophage-conditioned media with or without hemin. In most instances, hemin was found to stimulate the heme synthetic pathway in the presence of these agents. Iron and adherent (macrophage) cell conditioned media (CM) were found to stimulate heme oxygenase activity. Macrophage CM was found to suppress erythropoiesis in contrast to phytohemagglutinin-stimulated leukocyte (PHAL)-CM, which enhanced erythroid growth. In addition, porphobilinogen deaminase levels were greater in 14-day cultures containing hemin plus PHAL-CM as compared with hemin alone. These results are discussed with respect to the generation of hematopoietic inhibitory-stimulatory factors by the marrow microenvironment and their effects on heme synthesis and degradation.  相似文献   

    16.
    Intestinal epithelial cells and the mucosal immune cells in close proximity are thought to interact very closely. One well-established mechanism of this intercellular cross-talk is via the production of cytokines such as interferon gamma (IFNγ). The aim of this study was to analyze the effects of IFNγ on intestinal crypt epithelial cells. IEC-6 cells were cultured in the presence or absence of IFNγ to measure its effects on proliferation, cell cycle, apoptosis, and major histocompatibility complex (MHC) class II antigen expression. Even at very low doses (0.01 U/ml), IFNγ significantly inhibited IEC-6 cell proliferation, as demonstrated by reduced 3H-thymidine uptake, stable cell count, and complete arrest in the quiescent G0/G1 phase of the cell cycle. Incubation with supraphysiological doses of IFNγ (100–1,000 U/ml) did not induce apoptosis, as assessed by morphology and the TUNEL assay. IFNγ significantly induced de novo IEC-6 class II antigen expression. Tumor necrosis factor alpha (TNFα), which alone had no effect, synergistically enhanced this effect of IFNγ. MHC class II antigen expression was observed to be independent of cell cycle phase. Our results indicate that IFNγ alters immature crypt epithelial cell turnover and upregulates MHC class II expression. These alterations may be important in the pathogenesis of immune-mediated bowel disorders. J. Cell. Physiol. 176:120–126, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    17.
    To clarify the manner by which erythropoietin (EP), stem cell factor (SCF), or insulin-like growth factor I (IGF-I) regulate erythropoiesis, apoptosis of human erythroid progenitor cells was investigated. Human burst-forming units-erythroid (BFU-E) partially purified from peripheral blood were cultured for 6 days to generate erythroid colony-forming cells (ECFC), which consist mainly of colony-forming units-erythroid (CFU-E). The cells were labeled with [3H]thymidine, incubated in serum-free liquid media, at 37°C, for 16 h, and the pattern of DNA breakdown was analyzed by agarose gel electrophoresis. When these cells were incubated without EP, 70% of the total cellular DNA was broken down into DNA fragments of less than 5 kilobases and nuclear condensation and fragmentation, characteristic of apoptosis, were evident. While EP greatly reduced the amount of DNA breakdown to 23%, SCF and IGF-I each reduced the amount of DNA breakdown to 38–46% and, when added together, to 24%. Dose-response experiments with SCF and IGF-I showed a dose-dependent reduction in DNA fragmentation at concentrations that stimulate colony formation in serum-free semisolid cultures. Finally, assays of ECFC performed by the plasma clot method, after serum-free liquid culture, at 37°C, for 16 h, demonstrated marked protection of erythroid colony-forming capacity by SCF or IGF-I in the absence of EP, as well as by EP itself. These data indicate that human erythroid progenitor cells undergo apoptosis which is reduced by SCF and IGF-I as well as EP and suggest that the control of apoptosis by each of these factors has a prominent role in the regulation of erythropoiesis. © 1993 Wiley-Liss, Inc.  相似文献   

    18.
    We have examined a serum-deprived culture system in order to verify that it is suitable for the study of burst forming unit erythroid (BFU-E) progenitor cells from premature neonates. Optimum growth of BFU-E from premature neonates was observed with each media constituent using the same concentration as that previously described for adult subjects. Growth of immature BFU-E from premature neonates were highly dependant upon a source of Burst Promoting Activity and mature BFU-E derived colonies emerged at day 12 compared to day 14 in adults. Our preliminary results with the validated medium suggest that premature infants have increased peripheral blood concentrations of BFU-E compared to healthy adult controls.Abbreviations Ad Adherent cells - BPA Burst promoting activity - BFU-E Burst forming unit erythroid - Epo Erythropoietin - IL3 Interleukin-3 - LDC Low density (<1.077 g ml1) peripheral blood mononuclear cells  相似文献   

    19.
    Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号