首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adult ovary of the branchiuran Argulus japonicus is a single, median, long sac-like organ located in the thorax above the alimentary canal. A long germarium, including oogonia, very early previtellogenic oocytes, and young somatic cells (interstitial cells), is embedded in the dorsal ovarian wall along the median longitudinal line of the ovary. The ovarian wall, consisting of a layer of the ovarian epithelial cells, is folded repeatedly and distinctively in the lateral and ventral portions of the ovary. Growing oocytes, previtellogenic and vitellogenic, occur on the outer surface of the ovarian wall, not in the ovarian lumen. The smaller oocytes are located nearer to the germarium and the larger ones on the more ventral surface of the ovary. These structural features of the branchiuran ovary are compared with those of other crustaceans and the pentastomids to consider their phylogenetic implications. J. Morphol. 231:29–39, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Some histological details of the adult ovary of Hyleoglomeris japonica are described for the first time in the glomerid diplopods. The ovary is a single, long sac-like organ extending from the 4th to the 12th body segment along the median body axis, lying between the alimentary canal and the ventral nerve cord. The ovarian wall consists of a layer of thin ovarian epithelium which surrounds a wide ovarian lumen. A pair of longitudinal “germ zones,” including female germ cells, runs in the lateral ovarian wall. Each germ zone consists of two types of oogenetic areas: 1) 8–12 narrow patch-shaped areas for oogonial proliferation, arranged metamerically in a row along each of the dorsal and ventral peripheries, and 2) the remaining wide area for oocyte growth. Oogonial proliferation areas include oogonia, very early previtellogenic oocytes, and young somatic interstitial cells, among the ovarian epithelial cells. The larger early previtellogenic oocytes in the oogonial proliferation areas are located nearer to the oocyte growth area, and migrate to the oocyte growth area. They are surrounded by a layer of follicle cells and are connected with the ovarian epithelium of the oocyte growth area by a portion of their follicles. They grow into the ovarian lumen, but their follicles are still connected with the oocyte growth area. Various sizes of the previtellogenic and vitellogenic oocytes in the ovarian lumen are connected with the oocyte growth area; the smaller oocytes are connected nearer to the dorsal and ventral oogonial proliferation areas, while the larger ones are connected nearer to the longitudinal middle line of the oocyte growth area. Following the completion of vitellogenesis and egg membrane formation in the largest primary oocytes, the germinal vesicles break down. Ripe oocytes are released from their follicles directly into the ovarian lumen to be transported into the oviducts. Ovarian structure and oogenesis of H. japonica are very similar to those of other chilognathan diplopods. At the same time, however, some characteristic features of the ovary of H. japonica are helpful for understanding the structure and evolution of the diplopod ovaries. Some aspects of the phylogenetic significance in the paired germ zones of H. japonica are discussed. J. Morphol 231:277–285, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The adult female of the freshwater ostracod Cyprinotus uenoi Brehm, 1936 (Podocopida: Cypridoidea) has a pair of long, sac-like ovaries separately lying in the posterior part of the left and the right carapace valves. Oogonia and very early previtellogenic oocytes are located in the terminal germarium of each ovary. In the germarium, the oogonia occur in the most terminal region, and the very early previtellogenic oocytes are located in the remainder, arranged in order of size, the larger ones nearer the ovarian lumen. Most of the growing oocytes, previtellogenic and vitellogenic, are found in the ovarian lumen, the larger ones farther from the germarium. In the germarium, a cytoplasmic bridge connects a pair of adjoining germ cells, resulting from an incomplete cytokinesis of oogonial division. Among the previtellogenic and early vitellogenic oocytes in the ovarian lumen, "nurse cells" are found as small, spherical cells in mostly the same number as these oocytes. A cytoplasmic bridge connects each "nurse cell" to an adjoining oocyte. Based on the manner of connection and some morphological features, we consider that each "nurse cell" originates from one of each pair of adjoining germ cells connected by a cytoplasmic bridge in the germarium, as in the true nurse cells of several branchiopod crustaceans and insects with meroistic ovarioles.  相似文献   

4.
Structure of the adult ovary and oogenetic mode were examined in the freshwater crab Potamon dehaani. An H‐shaped ovary consisting of a pair of long ovarian sacs connected by a narrow bridge tube is located in the cephalothorax on the dorsal side of the stomach. A short oviduct with a seminal receptacle is connected with the posterior end of each ovarian sac, and a genital pore opens on the sternum of the sixth thoracic segment. The ovarian wall consists of a layer of ovarian epithelium that infolds to form a number of oogenetic pouches of various sizes. These are present mainly in the anterior regions of the ovarian sacs, are scarce in the posterior regions of the ovarian sacs, and are absent from the bridge tube. Each oogenetic pouch contains an egg or a relative large oocyte in its lumen. Germaria containing oogonia, very early previtellogenic oocytes, and somatic interstitial cells are located in the ovarian epithelium near the necks of the oogenetic pouches in the anterior regions of the ovarian sacs and are randomly scattered throughout the ovarian epithelium in the posterior regions of the ovarian sacs. In cross section, the germaria appear to be concentrated into a central germarial cluster in the ovarian sac. In the posterior regions of the ovarian sacs, however, the germaria are randomly scattered throughout the ovarian epithelium. An early previtellogenic oocyte leaves its germarium and raises the ovarian epithelium infolds to form a new oogenetic pouch in which it grows to maturity. Mature eggs are ovulated from the oogenetic pouches into the ovarian lumen, transferred from the ovarian lumen into the oviducts, fertilized there by sperm stored in the seminal receptacles, and then oviposited through the genital pores. The female reproductive system is surrounded wholly and tightly by a thin, cellular, membranous sheath, which has often been mistaken as the ovarian epithelium in some decapod crustaceans. J. Morphol. 239:107–114, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
The postembryonic development of the female reproductive system in the pycnogonid Propallene longiceps is examined. The germ cells can be detected first in the later stage of the 3rd instar and become a paired gonad covered with gonadal epithelium in the next instar. The larval gonad changes its shape: paired at the 4th instar, reversed U-shaped at the fifth, unpaired at the sixth, and paired again at the seventh. Oocytes can be distinguished, and the extension of the ovary into the walking legs begins at the 7th instar. Growing oocytes protrude outward from the ovary on cellular stalks in the pedal part. The trunk ovary becomes U-shaped, and the oviducts and genital pores start forming at the 8th instar. The disappearance of trunk ovary begins at the 9th instar, and is complete at the next adult stage. The connection between the pedal ovarian lumen and the genital pores via the oviducts is complete in the adult, and the female reproductive system becomes segmentally arranged. This study confirms that the segmental arrangement of adult female reproductive system in P. longiceps, which is unique among recently described arthropods, is a secondary state in pycnogonids attained by reducing the trunk part of ovary.  相似文献   

6.
Pseudoscorpion females carry fertilized eggs and embryos in specialized brood sacs, where embryos are fed with a nutritive fluid produced and secreted by somatic ovarian cells. We used various microscopic techniques to analyze the organization of the somatic cells in the ovary of a pseudoscorpion, Chelifer cancroides. In young specimens, the ovary is a cylindrical mass of internally located germline cells (oogonia and early previtellogenic oocytes) and two types of somatic cells: the epithelial cells of the ovarian wall and the internal interstitial cells. In subsequent stages of the ovary development, the oocytes grow and protrude from the ovary into the hemocoel (opisthosomal cavity). At the same time the interstitial cells differentiate into the follicular cells that directly cover the oocyte surface, whereas some epithelial cells of the ovarian wall form the oocyte stalks – tubular structures that connect the oocytes with the ovarian tube. The follicular cells do not seem to participate in oogenesis. In contrast, the cells of the stalk presumably have a dual function. During ovulation the stalk cells appear to contribute to the formation of the external egg envelope (chorion), while in the post-ovulatory phase of ovary function they cooperate with the other cells of the ovarian wall in the production of the nutritive fluid for the developing embryos.  相似文献   

7.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Remipedia are enigmatic crustaceans of uncertain phylogenetic position with the general consensus that they are crucial for understanding the crustacean/arthropod evolution. It has been demonstrated previously that the features of the ovary organization and subcellular aspects of oogenesis are useful in resolving phylogenetic relationships in arthropods such as hexapods and onychophorans. The structure of the female gonads in Remipedia remains largely unknown; therefore, we examined the gross morphology and ultrastructural details of the ovary in a remipede, Godzilliognomus frondosus, with special emphasis on characters relevant to phylogenetic reconstructions. The ovaries of G. frondosus are located in the anterior part of the body and are composed of a single anterior proliferative zone (the germarium) and paired ovarian tubes (the vitellarium). The oocytes undergo subsequent stages of development within the lumen of the ovarian tubes, hence the remipede ovaries can be classified as endogenous. During oogenesis, each oocyte is enveloped by a set of characteristic somatic follicular cells, which results in the formation of distinct ovarian follicles. Here, we demonstrate that Remipedia share significant similarities in the ovary organization with Cephalocarida, including the anterior location of the ovary, the anterior-most position of the germarium and the endogenous type of oocyte development. Phylogenetic implications of our findings are discussed.  相似文献   

9.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

10.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

11.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   

12.
The ovarian structure and oogenesis in the larval stages of 2 tubuliferan species, Bactrothrips brevitubus (Idolothripinae) and Holothrips yuasai (Phlaeothripinae) of the Thysanoptera were examined using ultrathin serial sections, with special reference to the cluster formation of germ cells. No cells identifiable as stem cells were found in the ovarian rudiments of the 1st and 2nd-instar larvae. The clusters of oogonial cells were observed frequently in the 1st-instar, but scarcely in the 2nd-instar larvae: all the oogonial clusters observed were composed of 2 cells. In the 2nd-instar larvae, the ovarian region posterior to the germarium, or the vitellarium, contained both solitary and clustered oocytes. The oocyte clusters were composed of less than 5 cells. The oocytes, located in the posterior region of the vitellarium, were all solitary and at the previtellogenic stages.A protuberance was found in some solitary germ cells. The structure may represent a remnant of the intercellular bridge, previously formed between the germ cells. The number of oocytes composing a cluster is small but does not always fit the 2n-rule. One possible explanation is the accelerated detachment process of oocytes from a cluster. The cluster formation of germ cells has been confirmed in the Tubulifera as well as in the Terebrantia, and this phenomenon can be recognized as a general feature of the panoistic ovaries of the Thysanoptera.  相似文献   

13.
The female reproductive system of Sphaerodema rusticum consists of a pair of ovaries, two lateral oviducts, a median common oviduct, and a median spermatheca. Accessory glands are absent. Each ovary has five free ovarioles branching from the oviduct. Each ovariole consists of a terminal filament, germarium, vitellarium, brown mass, and an exceptionally long pedicel. The terminal filament consists of a central core, interstitial cells, and an outer sheath. In the germarium, which consists of trophic and prefollicular regions, the trophic region or nurse cell chamber is divided into four histologically differentiated zones, distinguished as zones I–IV. Nutritive cords, originating from the posterior end of the trophic core in zone IV extend centrally and join the developing oocytes in the prefollicular chamber and the vitellarium. The compact prefollicular tissue at the base of the trophic core gives rise to prefollicular cells which, after encircling the young oocytes, become modified into follicular epithelial cells, the interfollicular plug, and epithelial plug. The young oocytes descend into the vitellarium and gradually develop into mature oocytes. A compound corpus luteum is observed simultaneously in all the ovarioles of both ovaries after ovulation. Below the epithelial plug there is an accumulation of material, the “brown mass,” which develops cyclically in correlation with the ovulation cycle. Each pedicel stores five mature chorionated eggs ready for oviposition. The epithelium of the anterior region of the pedicel secretes a PAS-positive material. General morphology and histology of the subdivisions of the ovarioles are described.  相似文献   

14.
The structures of the female reproductive system (ovary, oviduct and cloaca) of Ichthyophis supachaii were investigated by dissection, histology and light microscopy. Paired, elongated, sac‐like ovaries are parallel to the gut and fat bodies. Follicle stages include germinal nests of oogonia and primary oocytes, early and late previtellogenic follicles, early and late vitellogenic follicles and atretic follicles. Germinal nests of oogonia comprise oogonia and prefollicular cells. Nests of primary oocytes contain clusters of synchronously developing primary oocytes enclosed by connective tissue. Primary oocytes are associated with follicular cells. Previtellogenic follicles initially form the vitelline envelope, theca cell layers and patches of ooplasmic glycoproteins. Vitellogenic follicles contain heterogeneously sized spherical yolk granules. Atresia is present in several stages of developing follicles. The oviduct is divided into the anterior, middle and posterior parts. All oviductal parts are lined by non‐ciliated epithelium. A small number of mucous cells are present in the middle part. The cloaca of female I. supachaii is divided into the anterior and posterior chambers. The anterior chamber is lined by glandular stratified columnar epithelium, while the posterior chamber has stratified cuboidal epithelium with less mucus production. Our results contribute to useful information on the reproductive biology of caecilians.  相似文献   

15.
The anatomy, histology and ultrastructure of immature ovarioles of the 1st-instar nymphs of Machilis helleri (Thysanura : Machilidae) are described. The nymphs have 7 pairs of segmentally arranged panoistic ovariole primordia in which the germarium and previtellarium can be distinguished. The germarium contains oogonia, young oocytes, and prefollicular cells. The previtellarium is filled with previtellogenic oocytes, prefollicular cells, and a pyramid-like group of somatic cells representing the primordium of the pedicel and oviduct. The ultrastructure of individual types of cells correlates to a great extent with the respective cells of ovarioles of adult machilids. Oogonia undergo mitosis in the germarium and transform into young oocytes. These grow and develop into previtellogenic oocytes characterized by changes in the nucleolus and by emission of ribonucleoproteinaceous bodies from the nucleus into cytoplasm. Segmental arrangement of ovarioles in Archaeognatha is discussed in view of contemporary hypotheses on the anagenesis of the reproductive system of Articulata.  相似文献   

16.
The reproductive organs of both male and female European lobsters (Homarus gammarus) are H-shaped gonads that lie dorsal to the gut on the large hepatopancreas. The ovary consists of a pair of tubular, parallel lobules with a connecting bridge. The germarium of the ovary containing oogonia is concentrated in the center of the ovarian lobe. As oogonesis proceeds, the oocytes move to the peripheral regions of the ovary. The follicle cells begin to surround the oocytes in the previtellogenic stage, and the mature oocytes are completely surrounded by the follicle cells. Carbohydrates exist in both early and late vitellogenic oocytes that give PAS positive reaction. However, their rising protein content in late vitellogenic oocytes makes them stain with Bromophenol blue. Testes show convoluted lobules with a germinal epithelium and a central collecting duct, and the paired vasa deferentia have three distinct parts. Spermatophores are nonpedunculate and tubular, which extrude as a continuous column and consist of a sperm mass covered with primary and secondary layers. The primary layer stains with Bromophenol Blue and gives a PAS positive reaction. But the secondary layer only weakly stains with Bromophenol Blue. The histochemical results may indicate that the function of the two layers is different.  相似文献   

17.
Electron microscopy of the male phase of the ovotestis of Amphiprion frenatus , a protandric hermaphrodite, showed no connective tissue between male and female areas and, as the basal lamina was lacking both along the seminiferous tubules and round the previtellogenic oocytes, the male and female germ cells were only separated by their respective surrounding somatic cells (Sertoli and follicle cells). Besides previtellogenic oocytes, oocytes in meiotic prophase and very small (young) previtellogenic oocytes, were detected in the ovarian part, as spermatogenesis proceeded, revealing oogenetic activity. Degeneration of some previtellogenic oocytes and their follicle cells was discernible.  相似文献   

18.
Holland ND 《Tissue & cell》1971,3(1):161-175
The outer layer of the crinoid ovary consists of coelomic epithelium, smooth muscles, and nerve cell processes. The middle layer of the ovary contains non-germinal accessory cells, small germinal cells (either oogonia or pre-leptotene primary oocytes), and post-pachytene primary oocytes; all these cells are completely embedded in a haemal matrix of 200 A-diameter granules. The primary oocytes larger than 20mu in diameter have abundant invaginations in the plasma membrane, suggesting uptake of materials from the haemal matrix. The innermost layer of the ovary is a ciliated epithelium lining the cell-free ovarian lumen.  相似文献   

19.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.  相似文献   

20.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号